logo What's new in edition 92
Septemper 2021
Gene sites new with this edition

Gene sites new with this edition

Adenosine receptor
found in neurons
hoka
Lamin C
Myosuppressor
Myosuppressor receptor 1 and Myosuppressor receptor 2
pH-sensitive chloride channel 2
refectory to sigma P
Shroom
Snakeskin
stuxnet
Synaptogamin 7
teiresias
unextended
What was new in recent past editions
[edition 91] May 2021
[edition 90] January 2021
[edition 89] September 2020
[edition 88] May 2020
[edition 87] January 2020
[edition 86] September 2019
[edition 85] May 2019
[edition 84] January 2019
[edition 83] September 2018
[edition 82] May 2018
[edition 81] January 2018
[edition 80] September 2017
[edition 79] April 2017
[edition 78] January 2017

The Interactive Fly was first released July/August 1996, with updates provided at approximately one month intervals, through September 1997 (edition 13). Updating quarterly started with edition 14. With edition 40, the Interactive Fly began to schedule updates three times a year: fall, winter and spring.


Gene sites new with this edition of the Interactive Fly:

Adenosine receptor
Metabolites are increasingly appreciated for their roles as signaling molecules. To dissect the roles of metabolites, it is essential to understand their signaling pathways and their enzymatic regulations. From an RNA interference (RNAi) screen for regulators of intestinal stem cell (ISC) activity in the Drosophila midgut, this study identified adenosine receptor (AdoR) as a top candidate gene required for ISC proliferation. Ras/MAPK and Protein Kinase A (PKA) signaling act downstream of AdoR and Ras/MAPK mediates the major effect of AdoR on ISC proliferation. Extracellular adenosine, the ligand for AdoR, is a small metabolite that can be released by various cell types and degraded in the extracellular space by secreted adenosine deaminase. Interestingly, down-regulation of adenosine deaminase-related growth factor A (Adgf-A) from enterocytes is necessary for extracellular adenosine to activate AdoR and induce ISC overproliferation. As Adgf-A expression and its enzymatic activity decrease following tissue damage, this study provides important insights into how the enzymatic regulation of extracellular adenosine levels under tissue-damage conditions facilitates ISC proliferation (Xu, 2019).

found in neurons

Dendritic arbor morphology influences how neurons receive and integrate extracellular signals. This study shows that the ELAV/Hu family RNA-binding protein Found in neurons (Fne) is required for space-filling dendrite growth to generate highly branched arbors of Drosophila larval class IV dendritic arborization neurons. Dendrites of fne mutant neurons are shorter and more dynamic than in wild-type, leading to decreased arbor coverage. These defects result from both a decrease in stable microtubules and loss of dendrite-substrate interactions within the arbor. Identification of transcripts encoding cytoskeletal regulators and cell-cell and cell-ECM interacting proteins as Fne targets using TRIBE further supports these results. Analysis of one target, encoding the cell adhesion protein Basigin, indicates that the cytoskeletal defects contributing to branch instability in fne mutant neurons are due in part to decreased Basigin expression. The ability of Fne to coordinately regulate the cytoskeleton and dendrite-substrate interactions in neurons may shed light on the behavior of cancer cells ectopically expressing ELAV/Hu proteins (Alizzi, 2020).

hoka
Smooth septate junctions (sSJs) regulate the paracellular transport in the intestinal tract in arthropods. In Drosophila, the organization and physiological function of sSJs are regulated by at least three sSJ-specific membrane proteins: Ssk, Mesh, and Tsp2A. This study reports a novel sSJ membrane protein Hoka, which has a single membrane-spanning segment with a short extracellular region, and a cytoplasmic region with the Tyr-Thr-Pro-Ala motifs. The larval midgut in hoka-mutants shows a defect in sSJ structure. Hoka forms a complex with Ssk, Mesh, and Tsp2A and is required for the correct localization of these proteins to sSJs. Knockdown of hoka in the adult midgut leads to intestinal barrier dysfunction, and stem cell overproliferation. In hoka-knockdown midguts, aPKC is up-regulated in the cytoplasm and the apical membrane of epithelial cells. The depletion of aPKC and yki in hoka-knockdown midguts results in reduced stem cell overproliferation. These findings indicate that Hoka cooperates with the sSJ-proteins Ssk, Mesh, and Tsp2A to organize sSJs, and is required for maintaining intestinal stem cell homeostasis through the regulation of aPKC and Yki activities in the Drosophila midgut (Izumi, 2021).

Lamin C
The levels of nuclear protein Lamin A/C (Drosophila Lamin C) are crucial for nuclear mechanotransduction. Lamin A/C levels are known to scale with tissue stiffness and extracellular matrix levels in mesenchymal tissues. But in epithelial tissues, where cells lack a strong interaction with the extracellular matrix, it is unclear how Lamin A/C is regulated. This study shows in epithelial tissues that Lamin A/C levels scale with apico-basal cell compression, independent of tissue stiffness. Using genetic perturbations in Drosophila epithelial tissues, it was shown that apico-basal cell compression regulates the levels of Lamin A/C by deforming the nucleus. Further, in mammalian epithelial cells, this study show that nuclear deformation regulates Lamin A/C levels by modulating the levels of phosphorylation of Lamin A/C at Serine 22, a target for Lamin A/C degradation. Taken together, these results reveal a mechanism of Lamin A/C regulation which could provide key insights for understanding nuclear mechanotransduction in epithelial tissues (Iyer, 2021).

Myosuppressor
Peptidergic signaling regulates cardiac contractility; thus, identifying molecular switches, ligand-receptor contacts, and antagonists aids in exploring the underlying mechanisms to influence health. Myosuppressin (MS), a decapeptide, diminishes cardiac contractility and gut motility. Myosuppressin binds to G protein-coupled receptor (GPCR) proteins. Two Drosophila melanogaster myosuppressin receptors (DrmMS-Rs) exist; however, no mechanism underlying MS-R activation is reported. It was predicted that DrmMS-Rs contained molecular switches that resembled those of Rhodopsin. Additionally, it is believed DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 interactions would reflect structure-activity relationship (SAR) data. It was hypothesized agonist- and antagonist-receptor contacts would differ from one another depending on activity. Lastly, it was expected that this study would apply to other species; this hypothesis was tested in Rhodnius prolixus, the Chagas disease vector. Searching DrmMS-Rs for molecular switches led to the discovery of a unique ionic lock and a novel 3-6 lock, as well as transmission and tyrosine toggle switches. The DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 contacts suggested tissue-specific signaling existed, which was in line with SAR data. R. prolixus (Rhp)MS-R was identified and it, too, was found to contained the unique myosuppressin ionic lock and novel 3-6 lock found in DrmMS-Rs as well as transmission and tyrosine toggle switches. Further, these motifs were present in red flour beetle, common water flea, honey bee, domestic silkworm, and termite MS-Rs. RhpMS and DrmMS decreased R. prolixus cardiac contractility dose dependently with EC50 values of 140 nM and 50 nM. Based on ligand-receptor contacts, RhpMS analogs were designed that were believed to be an active core and antagonist; testing on heart confirmed these predictions. The active core docking mimicked RhpMS, however, the antagonist did not. Together, these data were consistent with the unique ionic lock, novel 3-6 lock, transmission switch, and tyrosine toggle switch being involved in mechanisms underlying TM movement and MS-R activation, and the ability of MS agonists and antagonists to influence physiology (Leander, 2015).

Myosuppressor receptor 1 and Myosuppressor receptor 2
The contributions of myosuppressin receptors 1 and 2 (MsR1 and MsR2) were explored. MsR1 expression was observed in crop muscles, in subsets of neurons including the PI and HCG Ms-positive neurons and neurons innervating the ovary and heart; no MsR1 expression was detected in ovarian or heart muscles. Expression of MsR2 was also detected in crop muscles. To investigate the function of the Ms receptor, MsR1 was downregulated specifically in adult crop muscles using two independent driver lines (vm-Gal4 and MsR1crop-Gal4). Both genetic manipulations led to reduced crop enlargement in a starvation-refeeding assay, comparable to that observed for Ms neuron silencing or Ms mutation. Downregulation of MsR2 did not affect crop enlargement. A role for MsR1 in mediating crop enlargement was confirmed using a MsR1TGEM mutant. MsR1 is therefore identified as the crop muscle receptor through which Ms signals to modulate crop enlargement (Hadjieconomou, 2020).

pH-sensitive chloride channel 2

In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes. This study used a genetic screen in Drosophila melanogaster to identify Hodor (pH-sensitive chloride channel 2), an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. These findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis (Redhai, 2020).

refectory to sigma P
Homeostasis of intestinal epithelia is maintained by coordination of the proper rate of regeneration by stem cell division with the rate of cell loss. Regeneration of host epithelia is normally quiescent upon colonization of commensal bacteria; however, the epithelia often develop dysplasia in a context-dependent manner, the cause and underlying mechanism of which remain unclear. This study shows that in Drosophila intestine, autophagy lowers the sensitivity of differentiated enterocytes to reactive oxygen species (ROS) that are produced in response to commensal bacteria. Autophagy deficiency provokes ROS-dependent excessive regeneration and subsequent epithelial dysplasia and barrier dysfunction. Mechanistically, autophagic substrate Ref(2)P/p62, which co-localizes and physically interacts with Dachs, a Hippo signaling regulator, accumulates upon autophagy deficiency and thus inactivates Hippo signaling, resulting in stem cell over-proliferation non-cell autonomously. These findings uncover a mechanism whereby suppression of undesirable regeneration by autophagy maintains long-term homeostasis of intestinal epithelia (Nagai, 2021).

Shroom
Regulation of cell architecture is critical in the formation of tissues during animal development. The mechanisms that control cell shape must be both dynamic and stable in order to establish and maintain the correct cellular organization. Previous work has identified Shroom family proteins as essential regulators of cell morphology during vertebrate development. Shroom proteins regulate cell architecture by directing the subcellular distribution and activation of Rho-kinase, which results in the localized activation of non-muscle myosin II. Because the Shroom-Rock-myosin II module is conserved in most animal model systems, Drosophila melanogaster was used to further investigate the pathways and components that are required for Shroom to define cell shape and tissue architecture. Using a phenotype-based heterozygous F1 genetic screen for modifiers of Shroom activity, several cytoskeletal and signaling protein were identified that may cooperate with Shroom. Two of these proteins, Enabled and Short stop, are required for ShroomA-induced changes in tissue morphology and are apically enriched in response to Shroom expression. While the recruitment of Ena is necessary, it is not sufficient to redefine cell morphology. Additionally, this requirement for Ena appears to be context dependent, as a variant of Shroom that is apically localized, binds to Rock, but lacks the Ena binding site, is still capable of inducing changes in tissue architecture. These data point to important cellular pathways that may regulate contractility or facilitate Shroom-mediated changes in cell and tissue morphology (Hildebrand, 2021).

Snakeskin
Smooth septate junctions (sSJs) regulate the paracellular transport in the intestinal tract in arthropods. In Drosophila, the organization and physiological function of sSJs are regulated by at least three sSJ-specific membrane proteins: Ssk, Mesh, and Tsp2A. This study reports a novel sSJ membrane protein Hoka, which has a single membrane-spanning segment with a short extracellular region, and a cytoplasmic region with the Tyr-Thr-Pro-Ala motifs. The larval midgut in hoka-mutants shows a defect in sSJ structure. Hoka forms a complex with Ssk, Mesh, and Tsp2A and is required for the correct localization of these proteins to sSJs. Knockdown of hoka in the adult midgut leads to intestinal barrier dysfunction, and stem cell overproliferation. In hoka-knockdown midguts, aPKC is up-regulated in the cytoplasm and the apical membrane of epithelial cells. The depletion of aPKC and yki in hoka-knockdown midguts results in reduced stem cell overproliferation. These findings indicate that Hoka cooperates with the sSJ-proteins Ssk, Mesh, and Tsp2A to organize sSJs, and is required for maintaining intestinal stem cell homeostasis through the regulation of aPKC and Yki activities in the Drosophila midgut (Izumi, 2021).

stuxnet
Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. This study reports a Drosophila gene, stuxnet (stx), that controls Pc protein stability. Heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. These results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity (Du, 2016).

Synaptogamin 7
Short-term synaptic plasticity is a fast and robust modification in neuronal presynaptic output that can enhance release strength to drive facilitation or diminish it to promote depression. The mechanisms that determine whether neurons display short-term facilitation or depression are still unclear. This study shows that the Ca(2+)-binding protein Synaptotagmin 7 (Syt7) determines the sign of short-term synaptic plasticity by controlling the initial probability of synaptic vesicle (SV) fusion. Electrophysiological analysis of Syt7 null mutants at Drosophila embryonic neuromuscular junctions demonstrate loss of the protein converts the normally observed synaptic facilitation response during repetitive stimulation into synaptic depression. In contrast, overexpression of Syt7 dramatically enhanced the magnitude of short-term facilitation. These changes in short-term plasticity were mirrored by corresponding alterations in the initial evoked response, with SV release probability enhanced in Syt7 mutants and suppressed following Syt7 overexpression. Indeed, Syt7 mutants were able to display facilitation in lower [Ca(2+)] where release was reduced. These data suggest Syt7 does not act by directly sensing residual Ca(2+) and argues for the existence of a distinct Ca(2+) sensor beyond Syt7 that mediates facilitation. Instead, Syt7 normally suppresses synaptic transmission to maintain an output range where facilitation is available to the neuron (Fujii, 2021).

teiresias
This study aims at identifying transcriptional targets of FruitlessBM (FruBM), which represents the major isoform of male-specific FruM transcription factors that induce neural sexual dimorphisms. A promoter of the axon-guidance factor gene robo1 carries the 16-bp palindrome motif Pal1, to which FruM binds. A genome-wide search for Pal1-homologous sequences yielded ~200 candidate genes. Among these, CG17716 potentially encodes a transmembrane protein with extracellular immunoglobulin (Ig)-like domains similar to Robo1. Indeed, FruBM overexpression reduced CG17716 mRNA and protein expression. In the fru-expressing mAL neuron cluster exhibiting sexual dimorphism, it was found that CG17716 knockdown in female neurons completely transformed all neurites to the male-type. Conversely, CG17716 overexpression suppressed male-specific midline crossing of fru-expressing sensory axons. CG17716 was renamed teiresias (tei) based on this feminizing function. It is hypothesized that Tei interacts with other Ig superfamily transmembrane proteins, including Robo1, to feminize the neurite patterns in females, whereas FruBM represses tei transcription in males (Sato, 2020).

unextended
Dietary magnesium (Mg(2+)) supplementation can enhance memory in young and aged rats. Memory-enhancing capacity was largely ascribed to increases in hippocampal synaptic density and elevated expression of the NR2B subunit of the NMDA-type glutamate receptor. This study shows that Mg(2+) feeding also enhances long-term memory in Drosophila. Normal and Mg(2+) enhanced fly memory appears independent of NMDA receptors in the mushroom body and instead requires expression of a conserved CNNM-type Mg(2+)-efflux transporter encoded by the unextended (uex) gene. UEX contains a putative cyclic nucleotide-binding homology domain and its mutation separates a vital role for uex from a function in memory. Moreover, UEX localization in mushroom body Kenyon Cells is altered in memory defective flies harboring mutations in cAMP-related genes. Functional imaging suggests that UEX-dependent efflux is required for slow rhythmic maintenance of Kenyon Cell Mg(2+). It is proposed that regulated neuronal Mg(2+) efflux is critical for normal and Mg(2+) enhanced memory (Wu, 2020).


date revised: 6 September 2021

Home page: The Interactive Fly © 2020 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.