logo What's new in edition 84
January 2019
Gene sites new with this edition

Gene sites new with this edition

ALG3, alpha-1,3- mannosyltransferase
brivido
deadhead
Defender against apoptotic cell death 1
Exchange protein directly activated by cAMP
Ion transport peptide
LIM homeobox transcription factor 1 alpha
multiprotein bridging factor 1
nicotine Acetylcholine Receptor α1
Nidogen/entactin
Nuclear polyadenosine RNA-binding protein 2
Optic atrophy 1
Patronin
porin
Rad, Gem/Kir family member 1
small conductance calcium-activated potassium channel
Smad activator for receptor activation
Sox102F
stranded at second
Ubiquilin
What was new in recent past editions
[edition 83] September 2018
[edition 82] May 2018
[edition 81] January 2018
[edition 80] September 2017
[edition 79] April 2017
[edition 78] January 2017
[edition 77] September 2016
[edition 76] May 2016
[edition 75] January 2016

The Interactive Fly was first released July/August 1996, with updates provided at approximately one month intervals, through September 1997 (edition 13). Updating quarterly started with edition 14. With edition 40, the Interactive Fly began to schedule updates three times a year: fall, winter and spring.


Gene sites new with this edition of the Interactive Fly:

ALG3, alpha-1,3- mannosyltransferase
Drosophila tumor suppressor genes have revealed molecular pathways that control tissue growth, but mechanisms that regulate mitogenic signaling are far from understood. This study reports that the Drosophila TSG tumorous imaginal discs (tid), whose phenotypes were previously attributed to mutations in a DnaJ-like chaperone, are in fact driven by the loss of the N-linked glycosylation pathway component ALG3. tid/alg3 imaginal discs display tissue growth and architecture defects that share characteristics of both neoplastic and hyperplastic mutants. Tumorous growth is driven by inhibited Hippo signaling, induced by excess Jun N-terminal kinase (JNK) activity. Ectopic JNK activation is caused by aberrant glycosylation of a single protein, the fly tumor necrosis factor (TNF) receptor homolog, which results in increased binding to the continually circulating TNF. These results suggest that N-linked glycosylation sets the threshold of TNF receptor signaling by modifying ligand-receptor interactions and that cells may alter this modification to respond appropriately to physiological cues (de Vreede, 2018).

brivido
How touch is sensed is fundamental for many physiological processes. However, the underlying mechanism and molecular identity for touch sensation are largely unknown. This study reports on defective gentle-touch behavioral responses in brv1 loss-of-function Drosophila larvae. RNAi and Ca(2+) imaging confirmed the involvement of Brv1 in sensing touch and demonstrated that Brv1 mediates the mechanotransduction of class III dendritic arborization neurons. Electrophysiological recordings further revealed that the expression of Brv1 protein in HEK293T cells gives rise to stretch-activated cation channels. Purified Brv1 protein reconstituted into liposomes were found to sense stretch stimuli. In addition, co-expression studies suggested that Brv1 amplifies the response of mechanosensitive ion channel NOMPC (no mechanoreceptor potential C) to touch stimuli. Altogether, these findings demonstrate a molecular entity that mediates the gentle-touch response in Drosophila larvae, providing insights into the molecular mechanisms of touch sensation (Zhang, 2018).

deadhead
The metabolic and redox state changes during the transition from an arrested oocyte to a totipotent embryo remain uncharacterized. This study applied state-of-the-art, integrated methodologies to dissect these changes in Drosophila. Early embryos were shown to have a more oxidized state than mature oocytes. Specific alterations were identified in reactive cysteines at a proteome-wide scale as a result of this metabolic and developmental transition. Consistent with a requirement for redox change, a role was demonstrated for the ovary-specific thioredoxin Deadhead (DHD). dhd-mutant oocytes are prematurely oxidized and exhibit meiotic defects. Epistatic analyses with redox regulators link dhd function to the distinctive redox-state balance set at the oocyte-to-embryo transition. Crucially, global thiol-redox profiling identified proteins whose cysteines became differentially modified in the absence of DHD. These potential DHD substrates were validated by recovering DHD-interaction partners using multiple approaches. One such target, NO66, is a conserved protein that genetically interacts with DHD, revealing parallel functions. As redox changes also have been observed in mammalian oocytes, a link between developmental control of this cell-cycle transition and regulation by metabolic cues is hypothesized. This link likely operates both by general redox state and by changes in the redox state of specific proteins. The redox proteome defined here is a valuable resource for future investigation of the mechanisms of redox-modulated control at the oocyte-to-embryo transition (Petrova, 2018).

Defender against apoptotic cell death 1
How organ growth is regulated in multicellular organisms is a long-standing question in developmental biology. It is known that coordination of cell apoptosis and proliferation is critical in cell number and overall organ size control, while how these processes are regulated is still under investigation. This study found that functional loss of a gene in Drosophila, named Drosophila defender against apoptotic cell death 1 (dDad1), leads to a reduction of tissue growth due to increased apoptosis and lack of cell proliferation. The dDad1 protein, an orthologue of mammalian Dad1, was found to be crucial for protein N-glycosylation in developing tissues. Loss of dDad1 function activates JNK signaling and blocking the JNK pathway in dDad1 knock-down tissues suppresses cell apoptosis and partially restores organ size. In addition, reduction of dDad1 triggers ER stress and activates unfolded protein response (UPR) signaling, prior to the activation of JNK signaling. Furthermore, Perk-Atf4 signaling, one branch of UPR pathways, appears to play a dual role in inducing cell apoptosis and mediating compensatory cell proliferation in this dDad1 knock-down model (Zhang, 2016).

Exchange protein directly activated by cAMP
This study defines a role of the cAMP intermediate EPAC in Drosophila aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the rutabaga adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue, mushroom body Kenyon cells (KCs) were identified as a necessary and sufficient site of EPAC action. Mechanistic insights were provided by analyzing acquisition dynamics and using the 'performance increment' as a means to access the trial-based sequential organization of odor learning. Thereby it was shown that versatile cAMP-dependent mechanisms are engaged within a sequential order that correlate to individual trials of the training session (Richlitzki, 2017).

Ion transport peptide
Maintenance of homeostasis is based on ingestion and metabolism of water and nutrients in a manner that reflects the internal needs of the animal, but the precise regulatory mechanisms are incompletely understood. Despite the strong evolutionary conservation of the main pathways underlying energy homeostasis, there is a considerable diversity in the strategies involved in the maintenance of water balance. In insects, this variability arises mainly from the diversity of their habitats and life history strategies. For example, some blood-sucking insects are able to ingest a blood meal that exceeds their body volume up to twelve-fold; their feeding is hence coupled to massive post-prandial diuresis of the excessive water and ions. However, in most of the non-blood sucking terrestrial insects, water conservation is more important than water secretion. Studies on water balance in insects have historically focused mainly on the hormonal regulation of water excretion. These studies investigated the correlations between the hormone titers and diuresis, and analyzed the effects of injections or in vitro applications of the tested compounds. These works contributed to a better understanding of water regulation at the level of fluid secretion by the Malpighian tubules and water reabsorption in the hindgut. Development of genetic tools for Drosophila has allowed analysis of diuretic hormones by direct genetic manipulations. However, no anti-diuretic hormone has been identified in Drosophila until now (Galikova, 2018).

LIM homeobox transcription factor 1 alpha
The Drosophila ovary serves as a model for pioneering studies of stem cell niches, with defined cell types and signaling pathways supporting both germline and somatic stem cells. The establishment of the niche units begins during larval stages with the formation of terminal filament-cap structures; however, the genetics underlying their development remains largely unknown. This study shows that the transcription factor Lmx1a is required for ovary morphogenesis. Lmx1a is expressed in early ovarian somatic lineages and becomes progressively restricted to terminal filaments and cap cells. Lmx1a is required for the formation of terminal filaments, during the larval-pupal transition. Finally, the data demonstrate that Lmx1a functions genetically downstream of Bric-a-Brac, and is crucial for the expression of key components of several conserved pathways essential to ovarian stem cell niche development. Importantly, expression of chicken Lmx1b is sufficient to rescue the null Lmx1a phenotype, indicating functional conservation across the animal kingdom. These results significantly expand understanding of the mechanisms controlling stem cell niche development in the fly ovary (Allbee, 2018).

multiprotein bridging factor 1
Under stress conditions, the coactivator Multiprotein bridging factor 1 (Mbf1) translocates from the cytoplasm into the nucleus to induce stress-response genes. However, its role in the cytoplasm, where it is mainly located, has remained elusive. This study shows that Drosophila Mbf1 associates with E(z) mRNA and protects it from degradation by the exoribonuclease Pacman (Pcm), thereby ensuring Polycomb silencing. In genetic studies, loss of mbf1 function enhanced a Polycomb phenotype in Polycomb group mutants, and was accompanied by a significant reduction in E(z) mRNA expression. Furthermore, a pcm mutation suppressed the Polycomb phenotype and restored the expression level of E(z) mRNA, while pcm overexpression exhibited the Polycomb phenotype in the mbf1 mutant but not in the wild-type background. In vitro, Mbf1 protected E(z) RNA from Pcm activity. These results suggest that Mbf1 buffers fluctuations in Pcm activity to maintain an E(z) mRNA expression level sufficient for Polycomb silencing (Nishioka, 2018).

nicotine Acetylcholine Receptor α1
Nicotinic acetylcholine receptors (nAChRs) are a highly conserved gene family that form pentameric receptors involved in fast excitatory synaptic neurotransmission. The specific roles individual nAChR subunits perform in Drosophila melanogaster and other insects are relatively uncharacterized. Of the 10 D. melanogaster nAChR subunits, only three have described roles in behavioral pathways; Dα3 and Dα4 in sleep, and Dα7 in the escape response. Other subunits have been associated with resistance to several classes of insecticides. In particular, previous work has demonstrated that an allele of the Dα1 subunit is associated with resistance to neonicotinoid insecticides. This study used ends-out gene targeting to create a knockout of the Dα1 gene to facilitate phenotypic analysis in a controlled genetic background. This is the first report of a native function for any nAChR subunits known to be targeted by insecticides. Loss of Dα1 function was associated with changes in courtship, sleep, longevity, and insecticide resistance. While acetylcholine signaling had previously been linked with mating behavior and reproduction in D. melanogaster, no specific nAChR subunit had been directly implicated. The role of Dα1 in a number of behavioral phenotypes highlights the importance of understanding the biological roles of nAChRs and points to the fitness cost that may be associated with neonicotinoid resistance (Somers, 2017).

Nidogen/entactin
Basement membranes (BMs) are thin sheet-like specialized extracellular matrices found at the basal surface of epithelia and endothelial tissues. They have been conserved across evolution and are required for proper tissue growth, organization, differentiation and maintenance. The major constituents of BMs are two independent networks of Laminin and Type IV Collagen in addition to the proteoglycan Perlecan and the glycoprotein Nidogen/entactin (Ndg). The ability of Ndg to bind in vitro Collagen IV and Laminin, both with key functions during embryogenesis, anticipated an essential role for Ndg in morphogenesis linking the Laminin and Collagen IV networks. This was supported by results from cultured embryonic tissue experiments. However, the fact that elimination of Ndg in C. elegans and mice did not affect survival strongly questioned this proposed linking role. This study has isolated mutations in the only Ndg gene present in Drosophila. While, similar to C. elegans and mice, Ndg is not essential for overall organogenesis or viability, it is required for appropriate fertility. Alike in mice, tissue-specific requirements of Ndg were found for proper assembly and maintenance of certain BMs, namely those of the adipose tissue and flight muscles. In addition, a thorough functional analysis of the different Ndg domains was performed in vivo. These results support an essential requirement of the G3 domain for Ndg function and unravel a new key role for the Rod domain in regulating Ndg incorporation into BMs. Furthermore, uncoupling of the Laminin and Collagen IV networks is clearly observed in the larval adipose tissue in the absence of Ndg, indeed supporting a linking role. In light of these findings, it is propose that BM assembly and/or maintenance is tissue-specific, which could explain the diverse requirements of a ubiquitous conserved BM component like Nidogen (Dai, 2018).

Nuclear polyadenosine RNA-binding protein 2
The Drosophila dNab2 protein is an ortholog of human ZC3H14, a poly(A) RNA binding protein required for intellectual function. dNab2 supports memory and axon projection, but its molecular role in neurons is undefined. This study presents a network of interactions that links dNab2 to cytoplasmic control of neuronal mRNAs in conjunction with the fragile X protein ortholog dFMRP. dNab2 and dfmr1 interact genetically in control of neurodevelopment and olfactory memory, and their encoded proteins co-localize in puncta within neuronal processes. dNab2 regulates CaMKII, but not futsch, implying a selective role in control of dFMRP-bound transcripts. Reciprocally, dFMRP and vertebrate FMRP restrict mRNA poly(A) tail length, similar to dNab2/ZC3H14. Parallel studies of murine hippocampal neurons indicate that ZC3H14 is also a cytoplasmic regulator of neuronal mRNAs. Altogether, these findings suggest that dNab2 represses expression of a subset of dFMRP-target mRNAs, which could underlie brain-specific defects in patients lacking ZC3H14 (Bienkowski, 2017).

Optic atrophy 1
Mitochondria shape is controlled by membrane fusion and fission mediated by mitofusins, Opa1, and Drp1, whereas mitochondrial motility relies on microtubule motors. These processes govern mitochondria subcellular distribution, whose defects are emphasized in neurons because of their polarized structure. This study examined how perturbation of the fusion/fission balance affects mitochondria distribution in Drosophila axons. Knockdown of Marf or Opa1 resulted in progressive loss of distal mitochondria and in a distinct oxidative phosphorylation and membrane potential deficit. Downregulation of Drp1 rescued the lethality and bioenergetic defect caused by neuronal Marf RNAi, but induced only a modest restoration of axonal mitochondria distribution. Surprisingly, Drp1 knockdown rescued fragmentation and fully restored aberrant distribution of axonal mitochondria produced by Opa1 RNAi; however, Drp1 knockdown did not improve viability or mitochondria function. These data show that proper morphology is critical for proper axonal mitochondria distribution independent of bioenergetic efficiency. The health of neurons largely depends on mitochondria function, but does not depend on shape or distribution (Trevisan, 2018).

Patronin
Epithelial folding is typically driven by localized actomyosin contractility. However, it remains unclear how epithelia deform when myosin levels are low and uniform. In the Drosophila gastrula, dorsal fold formation occurs despite a lack of localized myosin changes, while the fold-initiating cells reduce cell height following basal shifts of polarity via an unknown mechanism. This study shows that cell shortening depends on an apical microtubule network organized by the CAMSAP protein Patronin. Prior to gastrulation, microtubule forces generated by the minus-end motor dynein scaffold the apical cell cortex into a dome-like shape, while the severing enzyme Katanin facilitates network remodelling to ensure tissue-wide cell size homeostasis. During fold initiation, Patronin redistributes following basal polarity shifts in the initiating cells, apparently weakening the scaffolding forces to allow dome descent. The homeostatic network that ensures size/shape homogeneity is thus repurposed for cell shortening, linking epithelial polarity to folding via a microtubule-based mechanical mechanism (Takeda, 2018).

porin
The eukaryotic porin, also called the Voltage Dependent Anion-selective Channel (VDAC), is the main pore-forming protein of the outer mitochondrial membrane. In Drosophila melanogaster, a cluster of genes evolutionarily linked to VDAC is present on chromosome 2L. The main VDAC isoform, called VDAC1 (Porin1), is expressed from the first gene of the cluster. The porin1 gene produces two splice variants, 1A-VDAC and 1B-VDAC, with the same coding sequence but different 5' untranslated regions (UTRs). The influence of the two 5' UTRs, 1A-5' UTR and 1B-5' UTR, was studied on transcription and translation of VDAC1 mRNAs. In porin-less yeast cells, transformation with a construct carrying 1A-VDAC results in the expression of the corresponding protein and in complementation of a defective cell phenotype, whereas the 1B-VDAC sequence actively represses VDAC expression. Identical results were obtained using constructs containing the two 5' UTRs upstream of the GFP reporter. A short region of 15 nucleotides in the 1B-5' UTR should be able to pair with an exposed helix of 18S ribosomal RNA (rRNA), and this interaction could be involved in the translational repression. These data suggest that contacts between the 5' UTR and 18S rRNA sequences could modulate the translation of Drosophila 1B-VDAC mRNA. The evolutionary significance of this finding is discussed (Leggio, 2018).

Rad, Gem/Kir family member 1
For aversive olfactory memory in Drosophila, multiple components have been identified that exhibit different stabilities. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. This study determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies (MBs), which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. It is proposed that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact (Murakami, 2017).

small conductance calcium-activated potassium channel
In Drosophila larvae, Class IV sensory neurons respond to noxious thermal stimuli and provoke heat avoidance behavior. Previously, work has shown that the activated neurons displayed characteristic fluctuations of firing rates, which consisted of repetitive high-frequency spike trains and subsequent pause periods, and it has been proposed that the firing rate fluctuations enhanced the heat avoidance (Terada, 2016). This study further substantiates this idea by showing that the pause periods and the frequency of fluctuations are regulated by small conductance Ca(2+)-activated K(+) (SK) channels, and the SK knockdown larvae display faster heat avoidance than control larvae. The regulatory mechanism of the fluctuations in the Class IV neurons resembles that in mammalian Purkinje cells, which display complex spikes. Furthermore, the results suggest that such fluctuation coding in Class IV neurons is required to convert noxious thermal inputs into effective stereotyped behavior as well as general rate coding (Onodera, 2017).

Smad activator for receptor activation
During asymmetric division, fate assignation in daughter cells is mediated by the partition of determinants from the mother. In the fly sensory organ precursor cell, Notch signalling partitions into the pIIa daughter. Notch and its ligand Delta are endocytosed into Sara endosomes in the mother cell and they are first targeted to the central spindle, where they get distributed asymmetrically to finally be dispatched to pIIa. While the processes of endosomal targeting and asymmetry are starting to be understood, the machineries implicated in the final dispatch to pIIa are unknown. This study shows that Sara binds the PP1c phosphatase and its regulator Sds22. Sara phosphorylation on three specific sites functions as a switch for the dispatch: if not phosphorylated, endosomes are targeted to the spindle and upon phosphorylation of Sara, endosomes detach from the spindle during pIIa targeting (Loubery, 2017).

Sox102F
Precise control of neurite guidance during development is essential to ensure proper formation of neuronal networks and correct function of the central nervous system (CNS). How neuronal projections find their targets to generate appropriate synapses is not entirely understood. Although transcription factors are key molecules during neurogenesis, their entire function during the formation of networks in the CNS is not known. This study used the Drosophila melanogaster optic lobe as a model for understanding neurite guidance during development. The function of Sox102F/SoxD, the unique Drosophila orthologue of the vertebrate SoxD family of transcription factors, was assessed. SoxD is expressed in immature and mature neurons in the larval and adult lobula plate ganglia (one of the optic lobe neuropils), but is absent from glial cells, neural stem cells and progenitors of the lobula plate. SoxD RNAi knockdown in all neurons results in a reduction of the lobula plate neuropil, without affecting neuronal fate. This morphological defect is associated with an impaired optomotor response of adult flies. Moreover, knocking down SoxD only in T4/T5 neuronal types, which control motion vision, affects proper neurite guidance into the medulla and lobula. These findings suggest that SoxD regulates neurite guidance, without affecting neuronal fate (Contreras, 2018).

stranded at second
Normal epithelial cells often exert anti-tumour effects against nearby oncogenic cells. In the Drosophila imaginal epithelium, clones of oncogenic cells with loss-of-function mutations in the apico-basal polarity genes scribble or discs large are actively eliminated by cell competition when surrounded by wild-type cells. Although c-Jun N-terminal kinase (JNK) signalling plays a crucial role in this cell elimination, the initial event, which occurs at the interface between normal cells and polarity-deficient cells, has not previously been identified. Through a genetic screen in Drosophila, this study identifies the ligand Sas and the receptor-type tyrosine phosphatase PTP10D as the cell-surface ligand-receptor system that drives tumour-suppressive cell competition. At the interface between the wild-type 'winner' and the polarity-deficient 'loser' clones, winner cells relocalize Sas to the lateral cell surface, whereas loser cells relocalize PTP10D there. This leads to the trans-activation of Sas-PTP10D signalling in loser cells, which restrains EGFR signalling and thereby enables elevated JNK signalling in loser cells, triggering cell elimination. In the absence of Sas-PTP10D, elevated EGFR signalling in loser cells switches the role of JNK from pro-apoptotic to pro-proliferative by inactivating the Hippo pathway, thereby driving the overgrowth of polarity-deficient cells. These findings uncover the mechanism by which normal epithelial cells recognize oncogenic polarity-deficient neighbours to drive cell competition (Yamamoto, 2017).

Ubiquilin
dDsk2 (Ubqln2/Ubiquilin) is a conserved extraproteasomal ubiquitin receptor that targets ubiquitylated proteins for degradation. This study reports that dDsk2 plays a nonproteolytic function in transcription regulation. dDsk2 interacts with the dHP1c complex, localizes at promoters of developmental genes and is required for transcription. Through the ubiquitin-binding domain, dDsk2 interacts with H2Bub1 (monoubiquitylated H2B), a modification that occurs at dHP1c complex-binding sites. H2Bub1 is not required for binding of the complex; however, dDsk2 depletion strongly reduces H2Bub1. Co-depletion of the H2Bub1 deubiquitylase dUbp8/Nonstop suppresses this reduction and rescues expression of target genes. RNA polymerase II is strongly paused at promoters of dHP1c complex target genes and dDsk2 depletion disrupts pausing. Altogether, these results suggest that dDsk2 prevents dUbp8/Nonstop-dependent H2Bub1 deubiquitylation at promoters of dHP1c complex target genes and regulates RNA polymerase II pausing. These results expand the catalogue of nonproteolytic functions of ubiquitin receptors to the epigenetic regulation of chromatin modifications (Kessler, 2015).


date revised: 1 January 2019

Home page: The Interactive Fly © 2016 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.