logo What's new in edition 82
April 2018
Gene sites new with this edition

Gene sites new with this edition

Activity-related cytoskeleton associated protein 1
Connector enhancer of ksr
Cut up
DISCO Interacting Protein 1
G9a
Hybrid male rescue & Lethal hybrid rescue
Lysine (K)-specific demethylase 4A
Multiple ankyrin repeats single KH domain
Polypeptide N-acetylglucosaminetransferase 4
Putative Achaete Scute Target 1
Syndapin
Syntaxin 18
Vesicular glutamate transporter
What was new in recent past editions
[edition 81] January 2018
[edition 80] September 2017
[edition 79] April 2017
[edition 78] January 2017
[edition 77] September 2016
[edition 76] May 2016
[edition 75] January 2016
[edition 74] September 2015
[edition 73] April 2015
[edition 72] January 2015
[edition 71] September 2014

The Interactive Fly was first released July/August 1996, with updates provided at approximately one month intervals, through September 1997 (edition 13). Updating quarterly started with edition 14. With edition 40, the Interactive Fly began to schedule updates three times a year: fall, winter and spring.


Gene sites new with this edition of the Interactive Fly:

Activity-related cytoskeleton associated protein 1
Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. This study reports that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, these results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles (Ashley, 2018).

Connector enhancer of ksr
In Drosophila melanogaster, the receptor tyrosine kinase (RTK) Anaplastic lymphoma kinase (Alk) and its ligand Jelly belly (Jeb) are required to specify muscle founder cells in the visceral mesoderm. This study identified a critical role for the scaffolding protein Cnk (Connector enhancer of kinase suppressor of Ras) in this signaling pathway. Embryos that ectopically expressed the minimal Alk interaction region in the carboxyl terminus of Cnk or lacked maternal and zygotic cnk did not generate visceral founder cells or a functional gut musculature, phenotypes that resemble those of jeb and Alk mutants. Deletion of the entire Alk-interacting region in the cnk locus affected the Alk signaling pathway in the visceral mesoderm and not other RTK signaling pathways in other tissues. In addition, the Cnk-interacting protein Aveugle (Ave) was shown to be critical for Alk signaling in the developing visceral mesoderm. Alk signaling stimulates the MAPK/ERK pathway, but the scaffolding protein Ksr, which facilitates activation of this pathway, was not required to promote visceral founder cell specification. Thus, Cnk and Ave represent critical molecules downstream of Alk, and their loss genocopies the lack of visceral founder cell specification of Alk and jeb mutants, indicating their essential roles in Alk signaling (Wolfstetter, 2017).

Cut up
Because of their functional polarity and elongated morphologies, microtubule-based transport of proteins and organelles is critical for normal neuronal function. The proteasome is required throughout the neuron for the highly regulated degradation of a broad set of protein targets whose functions underlie key physiological responses including synaptic plasticity and axonal degeneration. Molecularly, the relationship between proteasome transport and the transport of the targets of proteasomes is unclear. The dynein motor complex is required for the microtubule-based motility of numerous proteins and organelles in neurons. This study demonstrates that microtubule-based transport of proteasomes within the neuron utilizes a distinct dynein light chain compared to synaptic proteins. Live imaging of proteasomes and synaptic vesicle proteins in axons and synapses finds that these cargoes traffic independently and that proteasomes exhibit significantly reduced retrograde transport velocities compared to synaptic vesicle proteins. Genetic and biochemical analyses reveals that the Drosophila homologue of the LC8 dynein light chain Cut-up binds proteasomes and functions specifically during their transport. These data support the model that Cut-up functions to specify the dynein-mediated transport of neuronal proteasomes (Kreko-Pierce, 2017)

DISCO Interacting Protein 1
Stable intronic sequence RNAs (sisRNAs) are by-products of splicing and regulate gene expression. How sisRNAs are regulated is unclear. This study report that a double-stranded RNA binding protein, Disco-interacting protein 1 (DIP1) regulates sisRNAs in Drosophila. DIP1 negatively regulates the abundance of sisR-1 and INE-1 sisRNAs. Fine-tuning of sisR-1 by DIP1 is important to maintain female germline stem cell homeostasis by modulating germline stem cell differentiation and niche adhesion. Drosophila DIP1 localizes to a nuclear body (satellite body) and associates with the fourth chromosome, which contains a very high density of INE-1 transposable element sequences that are processed into sisRNAs. DIP1 presumably acts outside the satellite bodies to regulate sisR-1, which is not on the fourth chromosome. Thus, this study identifies DIP1 as a sisRNA regulatory protein that controls germline stem cell self-renewal in Drosophila. Stable intronic sequence RNAs (sisRNAs) are by-products of splicing from introns with roles in embryonic development in Drosophila. The study shows that the RNA binding protein DIP1 regulates sisRNAs in Drosophila, which is necessary for germline stem cell homeostasis (Wong, 2017).

G9a
Organisms have developed behavioral strategies to defend themselves from starvation stress. Despite of their importance in nature, the underlying mechanisms have been poorly understood. This study shows that Drosophila G9a (dG9a), one of the histone H3 Lys 9-specific histone methyltransferases, functions as a key regulator for the starvation-induced behaviors. RNA-sequencing analyses utilizing dG9a null mutant flies revealed that the expression of some genes relating to gustatory perception are regulated by dG9a under starvation conditions. Reverse transcription quantitative-PCR analyses showed that the expression of gustatory receptor genes for sensing sugar are up-regulated in starved dG9a null mutant. Consistent with this, proboscis extension reflex tests indicated that dG9a depletion increased the sensitivity to sucrose under starvation conditions. Furthermore, the locomotion activity was promoted in starved dG9a null mutant. It was also found that dG9a depletion downregulates the expression of insulin-like peptide genes that are required for the suppression of starvation-induced hyperactivity. Furthermore, refeeding of wild type flies after starvation conditions restores the hyperactivity and increased sensitivity to sucrose as well as dG9a expression level. These data suggest that dG9a functions as a key regulator for the decision of behavioral strategies under starvation conditions (Shimaji, 2017).

Hybrid male rescue & Lethal hybrid rescue
Hybrid incompatibility between Drosophila melanogaster and D. simulans is caused by a lethal interaction of the proteins encoded by the Hmr (Hybrid male rescue) and Lhr (Lethal hybrid rescue) genes. In D. melanogaster the loss of HMR results in mitotic defects, an increase in transcription of transposable elements and a deregulation of heterochromatic genes. To better understand the molecular mechanisms that mediate HMR's function, this study measured genome-wide localization of HMR in D. melanogaster tissue culture cells by chromatin immunoprecipitation. Interestingly, HMR was found to localize to genomic insulator sites that can be classified into two groups. One group belongs to gypsy insulators and another one borders HP1a bound regions at active genes. The transcription of the latter group genes is strongly affected in larvae and ovaries of Hmr mutant flies. These data suggest a novel link between HMR and insulator proteins, a finding that implicates a potential role for genome organization in the formation of species (Gerland, 2017).

Lysine (K)-specific demethylase 4A
Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. It is concluded that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions (Colmenares, 2017).

Multiple ankyrin repeats single KH domain
This study shows that Mask, an Ankyrin-repeat and KH-domain containing protein, plays a key role in promoting autophagy flux and mitigating degeneration caused by protein aggregation or impaired ubiquitin-proteasome system (UPS) function. In Drosophila eye models of human tauopathy or amyotrophic lateral sclerosis diseases, loss of Mask function enhanced, while gain of Mask function mitigated, eye degenerations induced by eye-specific expression of human pathogenic MAPT/TAU or FUS proteins. The fly larval muscle, a more accessible tissue, was then used to study the underlying molecular mechanisms in vivo. Mask was found to modulate the global abundance of K48- and K63-ubiquitinated proteins by regulating macroautophagy/autophagy-lysosomal-mediated degradation, but not UPS function. Indeed, upregulation of Mask compensated the partial loss of UPS function. It was further demonstrated that Mask promotes autophagic flux by enhancing lysosomal function, and that Mask is necessary and sufficient for promoting the expression levels of the proton-pumping vacuolar (V)-type ATPases in a TFEB-independent manner. Moreover, the beneficial effects conferred by Mask expression on the UPS dysfunction and neurodegenerative models depend on intact autophagy-lysosomal pathway. These findings highlight the importance of lysosome acidification in cellular surveillance mechanisms and establish a model for exploring strategies to mitigate neurodegeneration by boosting lysosomal function (Zhu, 2017).

Polypeptide N-acetylglucosaminetransferase 4
The mucous barrier of the digestive tract is the first line of defense against pathogens and damage. Disruptions in this barrier are associated with diseases such as Crohn's disease, colitis and colon cancer, but mechanistic insights into these processes and diseases are limited. Loss of a conserved O-glycosyltransferase (PGANT4) in Drosophila has been shown to result in aberrant secretion of components of the peritrophic/mucous membrane in the larval digestive tract. This study shows that loss of pgant4 disrupts the mucosal barrier, resulting in epithelial expression of the IL-6-like cytokine Upd3, leading to activation of JAK/STAT signaling, differentiation of cells that form the progenitor cell niche and abnormal proliferation of progenitor cells. This niche disruption could be recapitulated by overexpressing upd3 and rescued by deleting upd3, highlighting a crucial role for this cytokine. Moreover, niche integrity and cell proliferation in pgant4-deficient animals could be rescued by overexpression of the conserved cargo receptor Tango1 and partially rescued by supplementation with exogenous mucins or treatment with antibiotics. These findings help elucidate the paracrine signaling events activated by a compromised mucosal barrier and provide a novel in vivo screening platform for mucin mimetics and other strategies to treat diseases of the oral mucosa and digestive tract (Zhang, 2017).

Putative Achaete Scute Target 1
Membranes form elaborate structures that are highly tailored to their specialized cellular functions, yet the mechanisms by which these structures are shaped remain poorly understood. This study shows that the conserved membrane-remodeling C-terminal Eps15 Homology Domain (EHD) protein Past1 is required for the normal assembly of the subsynaptic muscle membrane reticulum (SSR) at the Drosophila melanogaster larval neuromuscular junction (NMJ). past1 mutants exhibit altered NMJ morphology, decreased synaptic transmission, reduced glutamate receptor levels, and a deficit in synaptic homeostasis. The membrane-remodeling proteins Amphiphysin andSyndapin colocalize with Past1 in distinct SSR subdomains, and collapse into Amphiphysin-dependent membrane nodules in the SSR of past1 mutants. These results suggest a mechanism by which the coordinated actions of multiple lipid-binding proteins lead to the elaboration of increasing layers of the SSR, and uncover new roles for an EHD protein at synapses (Koles, 2015).

Syndapin
Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. This study reports a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. It is concluded that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division (Sherlekar, 2016).

Syntaxin 18
Targeted membrane addition is a hallmark of many cellular functions. In the nervous system, modification of synaptic membrane size has a major impact on synaptic function. However, because of the complex shape of neurons and the need to target membrane addition to very small and polarized synaptic compartments, this process is poorly understood. Here, we show that Gtaxin (GTX), a Drosophila t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor), is required for expansion of postsynaptic membranes during new synapse formation. Mutations in gtx lead to drastic reductions in postsynaptic membrane surface, whereas gtx upregulation results in the formation of complex membrane structures at ectopic sites. Postsynaptic GTX activity depends on its direct interaction with Discs-Large (DLG), a multidomain scaffolding protein of the PSD-95 (postsynaptic density protein-95) family with key roles in cell polarity and formation of cellular junctions as well as synaptic protein anchoring and trafficking. DLG selectively determines the postsynaptic distribution of GTX to type I, but not to type II or type III boutons on the same cell, thereby defining sites of membrane addition to this unique set of glutamatergic synapses. A mechanistic explanation for selective targeted membrane expansion at specific synaptic junctions is provided (Gorczyca, 2007).

Vesicular glutamate transporter
Neuronal activity can result in transient acidification of presynaptic terminals and such shifts in cytosolic pH (pHcyto) likely influence mechanisms underlying forms of synaptic plasticity with a presynaptic locus. As neuronal activity drives acid loading in presynaptic terminals it was hypothesized that the same activity might drive acid efflux mechanisms to maintain pHcyto homeostasis. To better understand the integration of neuronal activity and pHcyto regulation this study investigated the acid extrusion mechanisms at Drosophila glutamatergic motorneuron terminals. Expression of a fluorescent genetically-encoded pH-indicator (GEpHI), named 'pHerry', in the presynaptic cytosol revealed acid efflux following nerve activity to be greater than that predicted from measurements of the intrinsic rate of acid efflux. Analysis of activity-induced acid transients in terminals deficient in either endocytosis or exocytosis revealed an acid efflux mechanism reliant upon synaptic vesicle exocytosis. Pharmacological and genetic dissection in situ and in a heterologous expression system indicate that this acid efflux is mediated by conventional plasma membrane acid transporters, and also by previously unrecognized intrinsic H+ /Na+ exchange via the Drosophila vesicular glutamate transporter (DVGLUT). DVGLUT functions not only as a vesicular glutamate transporter but also serves as an acid extruding protein when deposited on the plasma membrane (Rossano, 2016).


date revised: 2 May 2018

Home page: The Interactive Fly © 2016 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.