anterior open/yan
At state 10, low levels of yan are expressed uniformly in most regions of the epidermis. During germband shortening, yan becomes restricted to a small number of cells that correspond to the tracheal system (Lai, 1992). Overexpressing yan in the mesoderm blocks embryonic mesodermal differentiation (Rebay, 1995).
In third instar larvae, Yan is seen in the eye imaginal disc in and near the morphogenetic furrow. Posterior to the furrow (i.e., after it passes), only basally located nuclei of uncommitted cells express high levels of Yan protein (Lai, 1992). Overexpressing yan in the eye blocks differentiation of non-neuronal cells (Rebay, 1995).
The biochemical regulatory network downstream of receptor tyrosine kinase (RTK) signaling is controlled by two opposing ETS family members: the transcriptional activator Pointed (Pnt) and the transcriptional repressor Yan. A bistable switch model has been invoked to explain how pathway activation can drive differentiation by shifting the system from a high-Yan/low-Pnt activity state to a low-Yan/high-Pnt activity state. Although the model explains yan and pnt loss-of-function phenotypes in several different cell types, how Yan and Pointed protein expression dynamics contribute to these and other developmental transitions remains poorly understood. Toward this goal this study used a functional GFP-tagged Pnt transgene (Pnt-GFP) to perform a comparative study of Yan and Pnt protein expression throughout Drosophila development. Consistent with the prevailing model of the Pnt-Yan network, numerous instances were found where Pnt-GFP and Yan adopt a mutually exclusive pattern of expression. However, many examples were also found of co-expression. While some co-expression occurred in cells where RTK signaling is presumed low, other co-expression occurred in cells with high RTK signaling. The instances of co-expressed Yan and Pnt-GFP in tissues with high RTK signaling cannot be explained by the current model, and thus they provide important contexts for future investigation of how context-specific differences in RTK signaling, network topology, or responsiveness to other signaling inputs, affect the transcriptional response (Boisclair Lachance, 2014).
Invasive cell migration in both normal development and metastatic cancer is
regulated by various signaling pathways, transcription factors and
cell-adhesion molecules. The coordination between these activities in the
context of cell migration is poorly understood. During Drosophila oogenesis, a
small group of cells called border cells (BCs) exit the follicular epithelium to
perform a stereotypic, invasive migration. The ETS transcription
factor Yan is required for border cell migration and Yan expression is
spatiotemporally regulated as border cells migrate from the anterior pole of the egg chamber towards the nurse cell-oocyte boundary. Yan expression is dependent on inputs from the JAK/STAT, Notch and Receptor tyrosine kinase pathways (Egfr and Pvr) in border cells. Mechanistically, Yan functions to modulate the turnover of DE-Cadherin-dependent adhesive complexes to facilitate border cell migration. These results suggest that Yan acts as a pivotal link between signal transduction, cell adhesion and invasive cell migration in Drosophila border cells (Schober, 2005).
To distinguish whether PVR and EGFR regulate Yan expression at the
transcriptional or post-transcriptional level, activated PVR
was expressed using slbo-Gal4 in a yanP(lacZ) background. BCs that do not express activated PVR
are clearly distinguishable from activated PVR-expressing BCs
by their migration defects in stage 10 egg chambers. Yan has been described as
suppressing its own transcription, and loss of Yan protein might thus result in
activation of the yanP(lacZ) reporter due to an
autoregulatory feedback loop. Interestingly, BCs that express activated PVR
strongly express ß-Gal, suggesting that PVR activation controls Yan
expression post-transcriptionally, which is further supported by RNA in situ
hybridization data using a yan-specific probe (Schober, 2005).
The data support a model where JAK/STAT and Notch signaling specify
anterior terminal cells including BCs, resulting in a strong expression of Yan
in BCs; increasing RTK activity can decrease Yan expression as BCs approach
their destination (Schober, 2005).
The Notch and RTK signaling pathways function to control AP axis
specification at early stages of oogenesis, resulting in expression of the ETS
transcription factor pointed (pnt) at the posterior pole. In
photoreceptor cells, RTK activation induces the downregulation of Yan, which
subsequently allows pnt expression and a switch in cell fate. Thus,
tests were performed to see whether Yan expression at the initiation of BC migration might
suppress pnt expression, and Yan downregulation at the nurse cell-oocyte
boundary might lead to pnt expression, and therefore, potentially,
induce BC differentiation. RNA in situ hybridization data and analysis of
pntP(lacZ) expression in ovaries revealed that
pnt is not expressed in BCs at any stage of oogenesis, and ectopic
expression of slbo-Gal4::UAS-pntP2 does not alter BC motility.
Furthermore, ectopic activation of PVR in BCs downregulates Yan
expression and
delays BC migration without induction of pntP(lacZ) in
BCs. Thus it is concluded
that although the Notch and RTK signaling pathways modulate Yan expression
levels in both photoreceptor cells and BCs, the mechanisms used are not
identical, and the transcriptional responses and downstream mechanisms depend,
at least in part, on the developmental context (Schober, 2005).
This study reveals that during oogenesis yan mutant BCs are
defective in their invasive migratory behavior. In addition, Yan
is upregulated as BCs exit the epithelium to become migratory, and that
subsequently Yan protein levels decay as BCs approach the nurse cell-oocyte boundary.
Because Yan functions as a transcriptional repressor and an
inhibitor of neuronal differentiation, whether it regulates BC
identity was examined. Although this possibility cannot be completely excluded,
BC markers are properly expressed in the absence of Yan. Thus, it is proposed that Yan
promotes BC motility, an hypothesis which is supported by the observations
that: (1) Yan is upregulated prior to the BCs exiting the follicular
epithelium to become migratory; (2) Yan protein levels decrease progressively
as BCs approach their final destination; and (3) yan mutant BCs
exhibit a delay in migration. Interestingly, ectopic expression of
constitutively activated Yan in BCs also delays their migration, suggesting
that the spatiotemporal activity of Yan protein needs to be precisely
controlled during the migratory process (Schober, 2005).
The dynamic expression of Yan is crucial for BC migration, as indicated by
the migratory defects associated with both gain- and loss-of-function alleles
of yan. Analysis of mutations in the JAK/STAT and Notch
signaling pathways reveals that they are required for the
expression of at least two transcription factors that are crucial for BC
migration and which themselves influence DE-Cad activity. Slbo is specifically
expressed in BCs and enhances shg transcription. Yan, by contrast, is
expressed in anterior terminal cells, but becomes upregulated in BCs at the
time they exit from the epithelium to become migratory. Yan might enhance
DE-Cad turnover to facilitate the transition from an immobile epithelial state
to a migratory one. Enhanced BC migration defects of hypomorphic slbo
mutant egg chambers overexpressing Yan further underscore their interaction to
regulate DE-Cad expression and BC migration (Schober, 2005).
Interestingly, Yan expression levels gradually decrease as BCs
move along an increasing PVR/EGFR activity gradient. Yan
has been shown to be phosphorylated by the EGFR-MAPK pathway, which triggers
its nuclear export and protein degradation.
Consistent with these previous studies, expression of dominant-active PVR and
EGFR in BCs blocks BC migration and abrogates Yan protein expression, whereas
yan transcript or enhancer trap expression is still detectable.
Expression of activated Ras and Raf similarly induced Yan downregulation,
consistent with an involvement of the canonical Ras/MAPK pathway in mediating
PVR/EGFR signaling. It is noted, however, that although BC migration is
significantly delayed upon ectopic expression of activated Ras, activated Raf
hardly affects their ability to migrate. The basis of this difference, which
might be due to complex feedback loops between the implicated signaling
pathways, is unclear at the present time and will need to be investigated
further (Schober, 2005).
Is the function of Yan to facilitate the transition of BCs from an
epithelial to a migratory state, or to promote their motility? Although
E-Cadherin is often downregulated as cells transit from an epithelial to a
mesenchymal-like migratory state, this may not be the case in BCs, since DE-Cad is strongly
expressed in BCs and shg mutant BCs fail to migrate.
However, BCs mutant for yan or Ecdysone hormone co-receptor taiman
(tai) accumulate ectopic
DE-Cad-containing adhesive complexes. Consistent with these observations, ectopic
stimulation of PVR in BCs, which enhances tai mutant BC migration
defects, also results in elevated, cortical DE-Cad staining. Even
though the observed BC migration defects in these mutants might not be due to
altered surface levels of DE-Cad only, it was found that overexpression of DE-Cad
alone can cause migration impaired BCs. E-cadherin not only mediates
homophilic cell-cell adhesion but also functions together with its binding
partners as a key regulator of the cortical actin cytoskeleton. It is
therefore interesting to note that follicle cells overexpressing DE-Cad show
severely enhanced filamentous actin staining (Schober, 2005).
The experiments revealed that DE-Cad was elevated in yan mutant
BCs and suppressed upon expression of UAS-yanACT,
suggesting that Yan controls, at least in part, DE-Cad expression in BCs.
These observations find further support in the partial rescue of
slbo-Gal4::UAS-yanACT-induced BC migration defects upon
co-expression of UAS-DE-Cad. How does Yan affect DE-Cad expression in
BCs? Although the function of Yan as a transcriptional repressor in various
tissues suggests
that it may act as a transcriptional regulator of shg, no change was detected
in shg transcription in yan mutant follicle
cells. However, increased membrane dye FM1-43 incorporation in Drosophila SL2
cells overexpressing YanACT, and a decrease in incorporation after
yanRNAi, suggests a change in endocytic activity.
E-Cadherin has been found in endocytic compartments and endocytosis
has been speculated to modulate E-Cadherin activity regulation during
morphogenetic movements. Interestingly, blocking endocytosis by the expression of
dominant-negative Rab5 leads to severe BC migration defects and increased
DE-Cad staining. Consistent with these observations, expression of shg
under a heterologous promoter has been shown to rescue shg
mutant BC migration defects, suggesting that the dynamic expression of DE-Cad
in BCs might depend on both transcriptional and post-transcriptional
mechanisms. Based on these results, a model is favored whereby Yan might,
at least in part, function to regulate DE-Cad turnover, possibly through the
transcriptional regulation of as-yet-unidentified components of the endocytic
machinery (Schober, 2005).
ETS transcription factors are not only regulators of morphogenetic
processes but have also been identified as oncogenes. Indeed, several ETS
factors are upregulated in invasive cancers and are currently used as
molecular markers to grade their invasiveness. The
molecular function of ETS factors in tumorigenesis is not clear, as they can
act as both oncogenes and tumor suppressors. The observations that
yan is associated with similar gain- and loss-of-function phenotypes
support both a positive and negative function on invasive migration, dependent
on activity levels and possibly on available cofactors. Furthermore, the
complexity of invasive tumors makes it difficult to assess what function ETS
factors have, as they are upregulated not only in the cancerous tissue but
also, for example, in forming blood vessels during tumor angiogenesis.
Finally, the finding that Yan levels are regulated by JAK/STAT, Notch and RTK
signaling pathways, which have been implicated in metastatic cancer, is
another strong connection between Yan-like ETS factors and tumorigenesis (Schober, 2005).
Egfr signaling is required in a narrow medial domain of the head ectoderm (here called head midline) that includes the anlagen of the medial brain (including the dorsomedial and ventral medial domain of the brain, termed DMD and VMD respectively), the visual system (optic lobe, larval eye) and the stomatogastric nervous system (SNS). These head midline cells differ profoundly from their lateral neighbors in the way they develop. Three differences are noteworthy: (1) Like their counterparts in the mesectoderm, the head midline cells do not give rise to typical neuroblasts by delamination, but stay integrated in the surface ectoderm for an extended period of time. (2) The proneural gene lsc, which
transiently (for approximately 30 minutes) comes on in all
parts of the procephalic neurectoderm while neuroblasts delaminate, is expressed continuously in the head midline cells for several hours. (3) Head midline cells, similar to ventral midline cells of
the trunk, require the Egfr pathway. In embryos carrying
loss-of-function mutations in Egfr, spi, rho, S and pnt, most of
the optic lobe, larval eye, SNS and dorsomedial brain are
absent. This phenotype arises by a failure of many
neurectodermal cells to segregate (i.e., invaginate) from the
ectoderm; in addition, around the time when segregation
should take place, there is an increased amount of apoptotic
cell death, accompanied by reaper expression, which removes many head midline cells. In embryos
where Egfr signaling is activated ectopically by inducing rho, or by argos
(aos) or yan loss-of-function,
head midline structures are variably enlarged. A typical
phenotype resulting from the overactivity of Egfr signaling
is a cyclops like malformation of the visual system, in which
the primordia of the visual system stay fused in the dorsal
midline. The early expression of cell fate markers, such as sine oculis in Spitz-group
mutants, is unaltered (Dumstrei, 1998).
Mutations in yan are recessive and result in a decrease in viability and fertility. The only morphological defect is a roughening of the exterior of the eye, resulting from extra photoreceptor cells. The extra cells are R7, the last of eight photoreceptors to form in each ommatidium. A decrease in yan function enhances the extra R7 cell phenotype produced by activated Gap1 and Ras1. This suggests that wild type yan acts antagonistically to Ras1 and Gap1 activation in the process of R7 cell-fate determination (Lai, 1992).
A collection of transposable-element-induced mutations have been screened for those which are dominant modifiers of the extra R7 phenotype of a hypomorphic yan mutation. The members of one
of the identified complementation groups correspond to disruptions of the tramtrack gene.
As heterozygotes, ttk alleles increase the percentage of R7 cells in yan mutant eyes. Just as yan
mutations increase ectopic R7 cell formation, homozygous ttk mutant eye clones also contain
supernumerary R7 cells. However, in contrast to yan, the formation of these cells in ttk mutant
eye tissue is not necessarily dependent on the activity of the sina gene. Furthermore, although
yan mutations are dominant in interactions with mutations in the Ras1, Draf, Dsor1, and rolled genes
to influence R7 cell development, ttk mutations only interact with yan and rl gene mutations to
affect this signaling pathway. These data suggest that yan and ttk both function to repress
inappropriate R7 cell development but that their mechanisms of action differ. In particular, TTK
activity appears to be autonomously required to regulate a sina-independent mechanism of R7
determination (Lai, 1996).
Genetic interactions were studied of yan with downstream components of the Sevenless pathway. yan mutation suppresses dominantly mutant raf and rolled eye phenotypes allowing single R7 cells to develop in ommatidia. raf mutation improves adult viability of mutant yan homozygotes. A reduced activity of tramtrack results in enhancement of the mutant yan phenotype. ttk mutations produce extra R7 cells even in sina homozygotes while the yan mutation does not. This results indicates thet TTK represses R7 induction downstream of the sites were YAN and SINA function (Yamamoto, 1996).
The Drosophila yan gene encodes an ETS domain nuclear protein with a transcription
repressor activity that can be downregulated through phosphorylation by mitogen-activated protein
kinase (MAPK). Before photoreceptor precursor cells commit to a particular cell fate, Yan is required
to maintain them in an undifferentiated state. tramtrack (ttk) mutations have been identified
that act as dominant enhancers of yan. ttk synergistically interacts with yan to inhibit the
R7 photoreceptor cell fate. Since ttk products are nuclear proteins with zinc-finger DNA-binding
motifs, yan and ttk represent two nuclear regulators essential for the control of cellular competence for
neural differentiation. Reduction of either yan or ttk activity suppresses eye phenotypes of the kinase
suppressor of ras (ksr) gene mutation, which is consistent with the involvement of yan and ttk in the
Ras/MAPK pathway. Based on the fact that yan acts upstream of sina and ttk acts downstream of sina, it is expected that interaction between yan and ttk does not occur through direct protein associations. A more likely scenario is that yan controls expression of downstream genes that are critical for regulating ttk expression or function. A strong candidate target gene is phyllopod, which acts downstream of yan and upstream of sina (Lai, Z.-C., 1997).
An allele of the yan locus has been isolated as an enhancer of the Ellipse mutation of the Drosophila
Egf-r gene. This yan allele is an embryonic lethal and also fails to
complement the lethality of anterior open (aop) mutations. Phenotypic and complementation
analysis reveals that aop is allelic to yan; genetically the lethal alleles act as null mutations for
the yan gene. Analysis of the lethal alleles in the embryo and in mitotic clones shows that loss of
yan function causes cells to overproliferate in the dorsal neuroectoderm of the embryo and in the
developing eye disc. These studies suggest that the role of Yan is defined by the developmental
context of the cells in which it functions. An important role of this gene is in allowing a cell to
choose between cell division and differentiation (Rogge, 1995).
The Drosophila fat facets (faf) gene encodes a deubiquitination enzyme with a putative function in proteasomal protein degradation. Mutants lacking zygotic faf function develop to adulthood, but have rough eyes caused by the presence of one to two ectopic outer photoreceptors per ommatidium. faf interacts genetically with the receptor tyrosine kinase (RTK)/Ras pathway, which induces photoreceptor differentiation in the developing eye. faf also interacts with pointed: the extra-photoreceptor phenotype observed in faf mutants is clearly suppressed by pointed mutation; many more ommatidia have six outer photoreceptors in a trapezoidal arrangement characteristic of wildtype ommatidia. yan mutation in combination with faf strongly enhances the faf phenotype. Reducing the D-Jun activity suppresses the faf mutant phenotype. In sevenless;faf double mutants, R7 cells, normally absent in sevenless mutants, form in 60% of the ommatidia. Thus, faf can alleviate the requirement for sev in the R7 precursor. These results indicate that RTK/Ras signaling is increased in faf mutants, causing normally non-neuronal cells to adopt photoreceptor fate. Consistently, the protein level of at least one component of the Ras signal transduction pathway, the transcription factor D-Jun, is elevated in faf mutant eye discs when the ectopic photoreceptors are induced. It is proposed that defective ubiquitin-dependent proteolysis leads to increased and prolonged D-Jun expression, which together with other factors contributes to the induction of ectopic photoreceptors in faf mutants. These studies demonstrate the relevance of ubiquitin-dependent protein degradation in the regulation of RTK/Ras signal transduction in an intact organism (Isaksson, 1997).
In the developing Drosophila eye, BarH1 and BarH2, paired homeobox genes expressed in R1/R6 outer photoreceptors and primary pigment cells, are essential for normal eye morphogenesis. BarH1 was ectopically expressed under the control of the sevenless enhancer (sev-BarH1). The sev enhancer drives gene expression strongly, not only in R7 precursors but also in R3/R5 and cone cell precursors. Evidence is presented that sev-BarH1 causes
two types of cone cell transformation: transformation of anterior/posterior cone cells into outer
photoreceptors and transformation of equatorial/polar cone cells into primary pigment cells. The ectopic primary pigment cells are partially similar in morphology to cone cells. sev-BarH1 represses the endogenous expression of the rough homeobox gene in R3/R4 photoreceptors,
while the BarH2 homeobox gene is activated by sev-BarH1 in an appreciable fraction of extra outer photoreceptors. In primary pigment cells generated by cone cell transformation, the expression of cut, a homeobox gene specific to cone cells, is completely replaced with that of Bar homeobox genes. Extra outer photoreceptor formation is either suppressed or enhanced, respectively, by reducing the activity of Ras/MAPK signaling or by dosage reduction of yan, a negative regulator of the pathway, suggesting interactions between Bar homeobox genes (cell fate determinants) and Ras/MAPK signaling in eye development. It is concluded that cone cell precursors may adopt four different cell fates: an outer photoreceptor fate, a primary pigment cell fate, a cone cell fate, or the fate of disappearance f from ommatidia (X-cell fate). Cone cell precursors appear to be divided into two subgroups with respect to sensitivity to sev-BarH1: either anterior/posterior or equatorial/polar cone cell precursors. sev-BarH1 causes transformation of a fraction of anterior/posterior cone cells into outer photoreceptors partially expressing R1/R6-specific genes and also causes the transformation of a fraction of equatorial/polar cone cells into primary pigment cells; this suggests that BarH1 serves as a determinant of R1/R6 and primary pigment cell fates in normal eye development (Hayashi, 1998).
The receptor tyrosine kinase (RTK) signaling pathway is used reiteratively during the development of all multicellular organisms. While the core RTK/Ras/MAPK signaling cassette has been studied extensively, little is known about the nature of the downstream targets of the pathway or how these effectors regulate the specificity of cellular responses. Drosophila yan is one of a few downstream components identified to date, functioning as an antagonist of the RTK/Ras/MAPK pathway. Ectopic expression of a constitutively active protein (yanACT) inhibits the differentiation of multiple cell types. In an effort to identify new genes functioning downstream in the Ras/MAPK/yan pathway, a genetic screen was performed to isolate dominant modifiers of the rough eye phenotype associated with eye-specific expression of yanACT. Approximately 190,000 mutagenized flies were screened, and 260 enhancers and 90 suppressors were obtained. Among the previously known genes recovered are four RTK pathway components [rolled (MAPK), son-of-sevenless, Star, and pointed], and two genes (eyes absent and string) that have not been implicated previously in RTK signaling events. Mutations in five previously uncharacterized genes were also recovered. One of these, split ends, has been characterized molecularly and is shown to encode a member of the RRM family of RNA-binding proteins (Rebay, 2000).
spen encodes a predicted protein of 5476 amino acids. Database searches indicate Spen belongs to a family of RRM proteins. The RRM is a loosely conserved RNA binding domain of ~22 conserved amino acids spread over an 80 to 100-amino-acid-long region. The most highly conserved sequences within the RRM motif are two ribonucleoprotein (RNP) domains designated RNP2 (a hexapeptide) and RNP1 (an octapeptide). Other conserved residues are scattered throughout the domain and include primarily hydrophobic amino acids. Spen contains three RRM motifs in tandem toward the N terminus of the protein (amino acids ~500-750). The Spen RRMs are most similar to RRMs in several novel proteins of unknown function. These include proteins predicted from conceptual translation of the BDGP Drosophila genomic sequence and the Caenorhabditis elegans genomic sequence, and proteins predicted from conceptual translation of human and mouse EST sequences. The first RRM of Spen is most divergent from the RRM consensus, and is also more loosely conserved among other spen-like proteins. Homology between Spen and other known RRM proteins in Drosophila or other species is less striking and strictly limited to residues defining the RRM consensus sequence. Thus, Spen may define a new subclass of RRM proteins. Other motifs in Spen include a predicted coiled coil region over amino acids 1857-1922 and amino acids 1979-2014 that could be suggestive of protein-protein interactions and a highly conserved C-terminal domain of unknown function that is found in proteins from worms to humans. Otherwise, the Spen protein sequence appears novel. Because some of the sequences identified by the database searches correspond to short EST sequences, it will be necessary to isolate full-length cDNA clones in order to determine whether these proteins contain both the RRM and the C-terminal domain. However, both motifs are found in a second Drosophila protein and in a human protein, suggesting that Drosophila Spen is a member of a novel family of proteins defined by both the RRM and C-terminal motifs (Rebay, 2000).
The isolation of spen as an enhancer of yanACT suggests it may play a role as a positive regulator of the RTK/Ras pathway. Preliminary results indicate Spen is a nuclear protein broadly expressed in most tissues and enriched in neuronal lineages. It is not known whether spen functions upstream or downstream of yan. One possibility is that spen might regulate the stability of the yan transcript. It has been postulated that the mechanism for downregulating yan activity involves post-translational modifications of the protein, namely phosphorylation by activated MAPK, that subsequently targets yan for degradation. Such post-translational regulation of yan would presumably need to be reinforced at the transcriptional and/or translational level. Thus, spen might play a role in destabilizing yan mRNA in response to Ras signaling. This would be consistent with the isolation of mutations in spen as enhancers of yanACT. Alternatively, Spen could be transcriptionally regulated by yan, and could play a role in splicing, stability, or transport of other downstream effector genes. Future phenotypic, genetic, and biochemical characterization of spen will be necessary to understand its role in Ras/yan signaling events (Rebay, 2000).
Among the remaining seven pathway relevant candidates are two genes of known function that have not been implicated previously in RTK/Ras-mediated signaling events. One of these groups, SY3-4, is allelic to the phosphatase string, a Drosophila homolog of the yeast cell cycle gene cdc25. string regulates the G2-M transition in dividing cells by dephosphorylating and activating the cdc2 kinase, thereby allowing formation of cyclin/cdc2 complexes that promote S phase. On the basis of the direction of interaction with yanACT, string would be postulated to be an antagonist of Ras signaling. Previous suggestions of a possible antagonistic relationship between string and Ras signaling come from a screen for modifiers of roughex, a negative regulator of G1 progression in the developing eye, which has identified string as a suppressor and ras1 as an enhancer (Rebay, 2000).
yan itself has been implicated in cell cycle control. Whereas hypomorphic yan mutations are semi-viable and have an extra photoreceptor phenotype, null mutations in yan are embryonic lethal, with the embryos dying as a result of overproliferation of cells in the dorsal neuroectoderm. Thus, depending on the developmental context, yan regulates not only the transition between undifferentiated and differentiated cell types, but also the choice between differentiation and cell division. Recovery of string alleles in this screen could reflect cross-talk between cell cycle and differentiation pathways that occurs in part at the level of transcriptional regulation. Thus, it is possible that the downstream targets of yan will include cell cycle regulators, such as string, or that yan expression and stability may be linked to cell cycle controls. Alternatively, String could have postmitotic functions essential to differentiation (Rebay, 2000).
string has not been isolated in any other Ras pathway screens; however, it was isolated, again as a suppressor, in a screen for modifiers of activated Notch. The direction of interaction suggests string acts as a positive regulator of Notch signaling. Expression of NACT and yanACT have similar developmental consequences since both inhibit or delay differentiation of the cell types in which they are expressed. Isolation of string in both screens could indicate a point of cross-talk between the Notch and the RTK/Ras pathway. Alternatively, isolation of string as a suppressor of both NotchACT and yanACT could have more to do with the similar terminal phenotype of these two backgrounds rather than reflecting direct interactions with the two pathways. Supporting the first hypothesis, cross-talk between the Notch and RTK pathways has been reported by numerous labs. Despite all the genetic interaction data, the mechanisms whereby the Notch and RTK pathways intersect remain to be determined. Experiments designed to study signaling by both pathways in vivo have suggested an antagonistic relationship, which would be consistent with string acting as a negative regulator of Ras signal transduction and a positive regulator of Notch signal transduction (Rebay, 2000 and references therein).
The second gene with a previously defined function that may be relevant to the RTK pathway on the basis of these genetic tests is eyes absent (eya. eya encodes a novel nuclear protein of unknown function that functions in a hierarchy of 'master eye regulatory genes' that are required to specify and promote differentiation of eye tissue. However, on the basis of expression pattern and phenotypes, it is possible that eya plays additional roles in development independent of its role in determining competence to become eye tissue. One possibility is that eya could be directly complexed with yan, and could direct its transcriptional repressor activity in certain tissues. However, preliminary yeast two-hybrid experiments have failed to indicate Yan-Eya protein-protein interactions. An alternate possibility to be investigated is transcriptional regulation of eya by Yan. Given the genetic interactions observed between eya and yanACT, it will be interesting to investigate the possible role of eya in RTK/yan-mediated signaling events in the embryo and developing eye. It could be that in order to differentiate as eye tissue, a developing cell must receive both a 'general' differentiation signal from the RTK pathway and a more specific eye fate specification signal (Rebay, 2000 and references therein).
Signaling by Egfr, the Drosophila epidermal growth factor receptor tyrosine kinase (RTK), is essential for proper migration and survival of midline glial cells (MGCs) in the embryonic central nervous system (CNS). A gene called split ends (spen) was isolated in a screen designed to identify new components of the RTK/Ras pathway. Drosophila Spen and its orthologs are characterized by a distinct set of RNA recognition motifs (RRMs) and a SPOC domain, a highly conserved carboxy-terminal domain of unknown function. To investigate spen function in the context of RTK signaling, the consequences of spen loss-of-function mutations on embryonic CNS development were examined. spen is required for normal migration and survival of MGCs; embryos lacking spen have CNS defects strikingly reminiscent of those seen in mutants of several known components of the Egfr signaling pathway. In addition, spen interacts synergistically with the RTK effector pointed. Using MGC-targeted expression, it was found that increased Ras signaling rescues the lethality associated with expression of a dominant-negative spen transgene. Therefore, spen encodes a positively acting component of the Egfr/Ras signaling pathway (Chen, 2000).
To examine the consequences of complete loss of spen function, spen germline clones were generated using the ovoD-FLP/FRT system. Embryos lacking both maternal and zygotic spen will be referred to as 'spen mutants'. These mutants exhibit moderate defects in CNS morphology, as visualized by anti-Elav antibody, a pan-neuronal marker. In stage 16 spen mutant embryos, the space separating the two longitudinal halves of the CNS is reduced compared with the wild type and, in some segments, the two sides are completely collapsed across the midline. Because of this collapse, the midline neurons are difficult to detect; however, labeling with the antibody 22C10 reveals that the ventral midline neurons are present and have no obvious defects in their projections. Because such collapsed CNS phenotypes might be indicative of defects in the midline, spen mutant embryos were examined for expression of the MGC-specific marker Slit. Initial determination of the MGCs appeared normal in spen mutants. The first detectable defects occur at late stage 12/early stage 13 when the MGCs normally initiate their migration. In the wild type, the glial cells migrate in a tightly packed configuration along the dorsal surface of the ventral nerve cord, whereas in spen mutants, the glia migrated aberrantly and became spread out in a more diffuse pattern. The results of these analyses differ from a recent report that excessive numbers of MGCs are initially specified in spen mutants. Using the Slit-lacZ nuclear enhancer trap marker to count the MGCs, comparable numbers of MGCs in the wild type and in spen mutants were detected up until stage 13, and a reduction in MGC number in spen mutants beginning at stage 14. Thus, in these spen mutants, which appear to be genetic and protein nulls, normal numbers of MGCs are initially specified, a phenotype consistent with what has been reported for other Egfr pathway mutants (Chen, 2000).
By stage 16, in a wild-type embryo, the Slit-positive MGCs have migrated and elongated to ensheathe the anterior commissure (AC) and posterior commissure (PC) axons, thereby maintaining proper separation and bundling. In similarly staged spen mutant embryos, the MGCs had not properly migrated or wrapped themselves around the commissure bundles. In addition, while apoptosis reduces the number of MGCs in wild type embryos from ~8 per segment at stage 13 down to only ~3 per segment by stage 16-17, in spen mutants this reduction is even more drastic, leaving only 1-2 MGCs per segment. Thus, in spen mutants, although initiation of MGC differentiation appears normal, the later aspects of glial development, including migration, wrapping, and survival or maintenance of the MGC fate, are defective. To confirm that Spen is expressed in the MGCs at stage 13 when its function is required, embryos carrying the MGC-specific enhancer trap line AA142, were double labeled with anti-beta-galactosidase and anti-Spen antibodies. The highest level of Spen expression is seen in the MGCs (Chen, 2000).
Because defects in glial cell development are likely to perturb organization of the CNS, spen mutant embryos were labeled with the antibody BP102, which highlights all axon tracts in the CNS. As predicted, the AC and PC axon bundles are not properly organized or separated and, in some segments, are completely fused. In addition, the two longitudinal connectives appear closer together than normal and are occasionally fully collapsed across the midline. Staining with the anti-Fasciclin II (FasII) antibody, which highlights a distinct set of three axon bundles in each longitudinal branch, further clarifies this phenotype. These longitudinal axon tracts never cross the midline in a wild-type embryo. In contrast, the FasII-positive axons cross and recross the midline in spen mutants, producing a fragmented and disorganized longitudinal axonal array (Chen, 2000).
In Drosophila, the genes rhomboid, Star, pointed and spitz, all positively acting components of the Egfr pathway, share a characteristic CNS phenotype similar to that of spen mutants. Specifically, whereas the proper number of MGCs are initially specified, they later migrate abnormally and eventually degenerate and die. The phenotypic similarities between spen and the Egfr pathway genes, as well as the isolation of spen as an enhancer of an activated yan allele, are consistent with the hypothesis that spen may be a positively acting factor in the Egfr/Ras signaling pathway. To explore this possibility, whether spen and the RTK pathway effector pointed interact synergistically in the midline was investigated. The expectation is that a reduction in activity of a proven positive effector of the Egfr pathway, such as pnt, should dominantly enhance the spen phenotype. Embryos lacking maternal spen can be partially rescued by zygotic spen expression from a paternally inherited wild-type allele (this genotype is referred to as spen/+). Stage 15-17 spen/+ embryos appear phenotypically wild type, with only ~4% of the embryos exhibiting CNS defects. Embryos heterozygous for a pnt loss-of-function mutation (pnt/+) have no apparent dominant defects. Reducing the pnt dosage in the spen/+ background increases the frequency of axonal defects to ~25%. The predominant phenotype is reduced separation between the two longitudinal axon pathways and a single inappropriate crossing of the midline by one of the FasII-positive axon tracts. This dose-sensitive interaction between pnt and spen strongly supports a role for spen as either a positively acting component of the Egfr pathway or as a component of a parallel pathway synergizing with Egfr during MGC development (Chen, 2000).
To investigate further the connection between spen and Egfr/Ras signaling in the MGCs, a putative dominant-negative spen transgene was generated that truncates the carboxy-terminal ~1500 amino acids, including the highly conserved SPOC domain. When transfected into S2 cultured cells, this construct (SpenDeltaC) is expressed at high levels and localizes to the nucleus just as is found for the endogenous wild-type Spen protein. Ubiquitous expression of SpenDeltaC is unable to rescue the lethality or phenotypes associated with spen mutants, implying an essential function for the conserved carboxy-terminal SPOC domain. To determine whether SpenDeltaC might behave as a dominant-negative mutation, the Slit-Gal4 driver was used to induce high levels of expression specifically in the MGCs. MGC-specific expression of SpenDeltaC results in completely penetrant lethality. In contrast, and consistent with the lack of primary neuronal defects associated with spen mutants, pan-neural expression of SpenDeltaC using the Elav-Gal4 driver does not compromise the viability or patterning of the fly. To test the hypothesis that the Slit-Gal4/SpenDeltaC lethality might be due to compromised RTK/Ras pathway signaling, a determination was made of whether increasing the level of Egfr/Ras pathway signaling, specifically in the MGCs, could compensate for the reduction in spen function associated with expression of the dominant-negative SpenDeltaC transgene. Whereas Slit-Gal4-driven expression of either an activated RasV12 or the SpenDeltaC transgene results in lethality, flies expressing both RasV12 and SpenDeltaC in the MGCs are viable and appear normally patterned. The mutual suppression is extremely penetrant, since over 50% of the expected class of flies was recovered. Similar, but less penetrant, rescue was obtained when SpenDeltaC and a secreted form of the Egfr ligand Spitz were coexpressed in the MGCs. Together, these results strongly suggest that spen functions autonomously in the MGCs, acting either downstream of or in parallel to Ras as a positive effector or regulator of RTK signaling (Chen, 2000).
Although the molecular mechanisms underlying Spen function in the RTK/Ras pathway remain to be elucidated, given its membership of the RRM family, one possibility is that Spen might directly regulate the processing and/or stability of specific transcripts to generate functionally distinct protein isoforms in response to, or required for, Ras signaling events. Post-transcriptional regulation of gene expression allows quick responses to external or developmental signals, and RRM family members have been shown to mediate many different cellular processes including mRNA splicing, stabilization, localization and transport. Two attractive potential targets of such activity in the CNS are the Ras pathway effector pointed and the zinc finger transcription factor tramtrack. Both genes produce alternatively spliced transcripts and are required in the MGCs. The synergistic interactions detected between spen and pointed make pointed a particularly appealing candidate. A third possibility, given that spen was isolated as an enhancer of an activated yan allele, is that Spen might function to destabilize yan transcripts in response to RTK-initiated signals. In this model, spen would contribute a second level of post-translational regulation that would reinforce the transient mitogen-activated protein (MAP) kinase signal that downregulates Yan protein, thereby stabilizing release from the Yan-mediated block to differentiation. In all these scenarios, spen could either function in parallel to the Ras/MAP kinase cascade, or could itself be directly regulated or activated by the pathway (Chen, 2000).
The homeobox genes ladybird in Drosophila and their vertebrate counterparts Lbx1 genes display restricted expression patterns in a subset of muscle precursors, and both of them are implicated in diversification of muscle cell fates. In order to gain new insights into mechanisms controlling conserved aspects of cell fate specification, a gain-of-function (GOF) screen was performed for modifiers of the mesodermal expression of ladybird genes using a collection of EP element carrying Drosophila lines. Among the identified genes, several have been previously implicated in cell fate specification processes, thus validating the strategy of the screen. Observed GOF phenotypes have led to the identification of an important number of candidate genes, whose myogenic and/or cardiogenic functions remain to be investigated. Among them, the EP insertions close to rhomboid, yan and rac2 suggest new roles for these genes in diversification of muscle and/or heart cell lineages. The analysis of loss and GOF of rhomboid and yan reveals their new roles in specification of ladybird-expressing precursors of adult muscles (LaPs) and ladybird/tinman-positive pericardial cells. Observed phenotypes strongly suggest that rhomboid and yan act at the level of progenitor and founder cells and contribute to the diversification of mesodermal fates. Analysis of rac2 phenotypes clearly demonstrate that the altered mesodermal level of Rac2 can influence specification of a number of cardiac and muscular cell types, including those expressing ladybird. The finding that in rac2 mutants ladybird and even skipped-positive muscle founders are overproduced, indicates a new early function for this gene during segregation of muscle progenitors and/or specification of founder cells. Intriguingly, rhomboid, yan and rac2 act as conserved components of Receptor Tyrosine Kinase (RTK) signalling pathways, suggesting that RTK signalling constitutes a part of a conserved regulatory network governing diversification of muscle and heart cell types (Bidet, 2003).
The presented rho, yan and rac2 gain and loss-of-function phenotypes, clearly demonstrate that these genes play critical roles in the specification of lb-expressing mesodermal lineages. When over-expressed, the regulator of EGF-ligand maturation rho is able to induce specification of an increased number of lb-positive lateral adult muscle precursors (LaPs). Consistent with this observation, the GOF of a negative effector of RTKs signalling yan leads to the loss of LaPs. Interestingly, the large number of LaPs in rho GOF embryos suggests that during segregation of the LaPs progenitor, the Notch-mediated lateral inhibition is affected. Antagonistic activities of the EGFR and the Notch signalling pathways have been reported, thus indicating that the excess of EGFR signalling can overrule the lateral inhibition during specification of muscular progenitors. The highly restricted mesodermal expression of rho suggests, however, that in wild type embryos the rho-triggered EGF signals can interfere with lateral inhibition only in a subset of promuscular clusters. This indicates that other RTKs contribute to the negative interactions with Notch. Taking into consideration all the available information, it is speculated that the ectopically expressed rho induces the EGFR pathway that antagonizes Notch dependent lateral inhibition, specifically during segregation of the LaP progenitor. This results in promoting the LaP fate. Since in rho and yan mutants the segmental border muscle (SBM) is duplicated, it is proposed that during specification of SBM founder the repressive action of yan is relieved by a Rho/EGFR-independent RTK pathway (Bidet, 2003).
These data also demonstrate new roles for rho, yan and rac2 in the specification of cardiac lineages. Interestingly, mutations of rho and rac2 affect specification of pericardial cells with no major effects on cardioblast identity. yan loss and GOF leads to even more pronounced phenotypes suggesting that, in addition to EGFR, other RTKs are involved in diversification of cardiac fates. rho and Ras/MAPK pathway have been shown to influence specification of eve-expressing pericardial cells. In addition, this study shows that rho represses and yan promotes specification of lb-positive pericardial cells. Surprisingly, in rho mutants, the supernumerary lb-positive pericardial cells co-express eve, a situation never observed in wild type embryos because of mutual repressive activities of eve and lb. This suggests that cross-repression requires the co-ordinated action of identity gene products and effectors of RTK signalling pathway. The overproduction of tin/eve-positive pericardial cells observed in rho GOF and in rac2 loss of function mutants suggests that the diversification of this particular cell type involves a rac2-dependent trafficking of EGF receptor. A future challenge will be to unravel whether Drosophila rac2 indeed co-operates with cell fate specification machinery by controlling the intracellular processing of EGFR and others RTKs (Bidet, 2003).
Rhomboid belongs to a large family of intermembrane serine proteases regulating the EGF-like ligand maturation in different species from prokaryotes to Human. One of the mouse rho homologs, ventrhoid, exhibits a very dynamic expression in central nervous system and forming somites, suggesting it may regulate early cell fate specification genes in a manner similar to that in which rho regulates lb in Drosophila. Several yan-like genes have also been identified in vertebrates. Two human yan homologs, named tel1 and tel2 share similar mesodermal embryonic expression pattern restricted to hematopoietic lineages. In addition, in adult mouse, tel1 is expressed in the heart and in skeletal muscles. As in Drosophila, yan functions with its closely related partner pointed. It is important to note that the vertebrate pnt genes ets-1 and ets-2 are involved in early embryonic heart and muscle development. The numerous vertebrate homologs of the third candidate gene of this study, rac2, control a variety of cellular processes including actin polymerization, integrin complex formation, cell adhesion, membrane trafficking, cell cycle progression, and cell proliferation. The majority Rho-GTPases are ubiquitously expressed, including the developing muscular and cardiac tissues, but their myogenic functions have not yet been investigated. The vertebrate Rac2 gene is specifically required for hematopoiesis. Its mutation in mice leads to the defective neutrophil cellular functions reminiscent of human phagocyte immunodeficiency. The only described link between Rho-GTPases and muscle concerns the binding and activation of a Serine/Threonine protein kinase homologous to myotonic dystrophy kinase by a small GTP binding protein Rho. It is speculated, however, that given the involvement of RhoB in EGFR trafficking, the vertebrate Rho GTPase can contribute to RTK-controlled myogenic pathways (Bidet, 2003).
Alic, N., Giannakou, M. E., Papatheodorou, I., Hoddinott, M. P., Andrews, T. D., Bolukbasi, E. and Partridge, L. (2014). Interplay of dFOXO and two ETS-family transcription factors determines lifespan in Drosophila melanogaster. PLoS Genet 10: e1004619. PubMed ID: 25232726
Baker, D. A., Mille-Baker, B., Wainwright, S. M., Ish-Horowicz, D. and Dibb, N. J. (2001). Mae mediates MAP kinase phosphorylation of Ets transcription factors in Drosophila. Nature 411: 330-334. FBgn0034373
Behan, K. J., et al. (2002). Yan regulates Lozenge during Drosophila eye development. Dev. Genes Evol. 212: 267-276. 12111211
Bidet, Y., et al. (2003). Modifiers of muscle and heart cell fate specification identified by gain-of-function screen in Drosophila. Mech. Dev. 120: 991-1007. 14550529
Boccuni, P., MacGrogan, D., Scandura, J. M. and Nimer, S. D. (2003). The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J. Biol. Chem. 278(17): 15412-20. 12588862
Boisclair Lachance, J. F., Pelaez, N., Cassidy, J. J., Webber, J. L., Rebay, I. and Carthew, R. W. (2014). A comparative study of Pointed and Yan expression reveals new complexity to the transcriptional networks downstream of receptor tyrosine kinase signaling. Dev Biol 385: 263-278. PubMed ID: 24240101
Boisclair Lachance, J. F., Webber, J. L., Hong, L., Dinner, A. and Rebay, I. (2018). Cooperative recruitment of Yan via a high-affinity ETS supersite organizes repression to confer specificity and robustness to cardiac cell fate specification. Genes Dev 32(5-6):389-401. PubMed ID: 29535190
Brodu, V., Elstob, P. R. and Gould, A. P. (2004). EGF receptor signaling regulates pulses of cell delamination from the Drosophila ectoderm. Dev. Cell 7: 885-895. 15572130
Brunner, D., et al. (1994). The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370: 386-389. PubMed Citation: 8047146
Buijs, A., et al. (2000). The MN1-TEL fusion protein, encoded by the translocation (12;22)(p13;q11) in myeloid leukemia, is a transcription factor with transforming activity. Mol. Cell. Biol. 20(24): 9281-93. 11094079
Caviglia, S. and Luschnig, S. (2013). The ETS domain transcriptional repressor Anterior open inhibits MAP kinase and Wingless signaling to couple tracheal cell fate with branch identity. Development 140: 1240-1249. PubMed ID: 23444354
Chakrabarti, S. R. and Nucifora, G. (1999). The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochem. Biophys. Res. Commun. 264: 871-877. 10544023
Chakrabarti, S. R., Sood, R., Nandi, S. and Nucifora, G. (2000). Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Proc. Natl. Acad. Sci. 97: 13281-13285. 11078523
Chang, H. C., et al. (1995). phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80: 463-472. PubMed Citation: 7888014
Charroux, B., Freeman, M., Kerridge, S. and Baonza, A. (2006). Atrophin contributes to the negative regulation of epidermal growth factor receptor signaling in Drosophila. Dev. Biol. 291(2): 278-90. 16445904
Chen, F. and Rebay, I. (2000). split ends, a new component of the Drosophila EGF receptor pathway, regulates development of midline glial cells. Curr. Biol. 10: 943-946. PubMed Citation: 10959845
Dobson, A. J., Boulton-McDonald, R., Houchou, L., Svermova, T., Ren, Z., Subrini, J., Vazquez-Prada, M., Hoti, M., Rodriguez-Lopez, M., Ibrahim, R., Gregoriou, A., Gkantiragas, A., Bahler, J., Ezcurra, M. and Alic, N. (2019). Longevity is determined by ETS transcription factors in multiple tissues and diverse species. PLoS Genet 15(7): e1008212. PubMed ID: 31356597
Donaldson, L. W., et al. (1994). Secondary structure of the ETS domain places murine Ets-1 in the superfamily of winged helix-turn-helix
DNA-binding proteins. Biochemistry 33: 13509-16. PubMed Citation: 7947760
Dumstrei, K., et al. (1998). EGFR signaling is required for the differentiation and maintenance of neural progenitors along the dorsal midline of the Drosophila embryonic head. Development 125(17): 3417-3426. PubMed Citation: 9693145
Ehninger, D., Neff, F. and Xie, K. (2014). Longevity, aging and rapamycin. Cell Mol Life Sci 71: 4325-4346. PubMed ID: 25015322
Firth, L. C., and Baker, N. E. (2009). Retinal determination genes as targets and possible effectors of extracellular signals. Dev. Biol. 327: 366-375. PubMed Citation: 19135045
Flores, G. V., et al. (2000). Combinatorial signaling in the specification of unique cell fates. Cell 103: 75-85. PubMed Citation: 11051549
Garoia, F., Grifoni, D., Trotta, V., Guerra, D., Pezzoli, M. C. and Cavicchi, S. (2005). The tumor suppressor gene fat modulates the EGFR-mediated proliferation control in the imaginal tissues of Drosophila melanogaster. Mech. Dev. 122(2): 175-87. 15652705
Golub, T. R., et al. (1994) Fusion of PDGF receptor B to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation.
Cell 77: 307-316. PubMed Citation: 8168137
Golub, T. R., et al. (1996). Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol. Cell. Biol. 16(8): 4107-16. PubMed Citation: 8754809
Gu, X., Shin, B.-H., Akbarali, Y., Weiss, A., Boltax, J., Oettgen, P. and Libermann, T. A. (2001). Tel-2 is a novel transcriptional repressor related to the Ets factor Tel/ETV-6. J. Biol. Chem. 276: 9421-9436. 11108721
Halfon, M. S., et al. (2000). Ras pathway specificity is
determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell 103: 63-74. PubMed Citation: 11051548
Hayashi, T., Kojima, T. and Saigo, K. (1998). Specification of primary pigment cell and outer photoreceptor fates by BarH1 homeobox gene in the
developing Drosophila eye. Dev. Biol. 200(2): 131-145. PubMed Citation: 9705222
Hock, H., et al. (2004). Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev. 18(19): 2336-41. 15371326
Hope, C. M., Rebay, I. and Reinitz, J. (2017). DNA Occupancy of Polymerizing Transcription Factors: A chemical model of the ETS family factor Yan. Biophys J 112(1): 180-192. PubMed ID: 28076810
Irvin, B. J., et al. (2003). TEL, a putative tumor suppressor, induces apoptosis and represses transcription of Bcl-XL. J. Biol. Chem. 278(47): 46378-86. 12960174
Isaksson, A., et al. (1997). The deubiquitination enzyme fat facets negatively regulates
RTK/Ras/MAPK signalling during Drosophila eye development. Mech. Dev. 68(1-2): 59-67
Jacobs, D., et al. (1998). Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics 149(4): 1809-1822
Jacobs, D., et al. (1999). Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13(2): 163-175
Jousset, C., et al. (1997). A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J. 16: 69-82. 9009269
Kim, C. A., Phillips, M. L., Kim, W., Gingery, M., Tran, H. H., Robinson, M. A., Faham, S. and Bowie, J. U. (2001). Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J. 20: 4173-4182. 11483520
Kurada, P. and White, K. (1998). Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95(3): 319-29
Lai, Z.-C., et al. (1996). Loss of tramtrack gene activity results in ectopic R7 cell formation, even in a sina mutant background. Proc. Natl. Acad. Sci. 93: 5025-30
Lai, Z.-C., Fetchko, M. and Li, Y. (1997). Repression of Drosophila photoreceptor cell fate through
cooperative action of two transcriptional repressors Yan and
Tramtrack. Genetics 147(3): 1131-1137
Lamming, D. W., Ye, L., Sabatini, D. M. and Baur, J. A. (2013). Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123: 980-989. PubMed ID: 23454761
Lopez, R. G., et al. (1999). TEL is a sequence-specific transcriptional repressor. J. Biol. Chem. 274: 30132-8
Lopez, R. G., Carron, C. and Ghysdael, J. (2003). v-SRC specifically regulates the nucleo-cytoplasmic delocalization of the major isoform of TEL (ETV6).
J. Biol. Chem. 278(42): 41316-25. 12893822
Potter, M. D., Buijs, A., Kreider, B., van Rompaey, L. and Grosveld, G. C. (2000). Identification and characterization of a new human ETS-family transcription factor, TEL2, that is expressed in hematopoietic tissues and can associate with TEL1/ETV6. Blood 95: 3341-3348. 10828014
Riesgo-Escovar, J. R. and Hafen, E. (1997). Drosophila Jun kinase regulates expression of decapentaplegic via the
ETS-domain protein Aop and the AP-1 transcription factor DJun during dorsal closure. Genes Dev. 11:1717-1727
Gabay, L., et al. (1996). EGF receptor signaling induces pointed P1 and inactivates Yan protein in the Drosophila embryonic ventral ectoderm. Development 122: 3355-3362
Hacohen, N., et al. (1998). sprouty encodes a novel antagonist of FGF signaling that
patterns apical branching of the Drosophila airways. Cell 92(2): 253-263.
Kauffmann, R. C., et al. (1996). Ras1 and transcriptional compentence in the R7 cell of Drosophila. Genes and Dev. 10: 2167-78
Kramer, B., Wiegmann, K. and Kronke, M. (1995). Regulation of the human TNF promoter by the
transcription factor Ets. J Biol Chem 270: 6577-6583
Lai, Z.C. and Rubin, G.M., (1992). Negative control of photoreceptor development in Drosophila by the product of the yan gene, an ETS domain protein. Cell 70(4): 609-620
Li, X. and Carthew, R. W. (2005). A microRNA mediates EGF receptor signaling
and promotes photoreceptor differentiation in the Drosophila eye. Cell 123:
1267-1277. 16377567
Lopez, R. G., Carron, C., Oury, C., Gardellin, P., Bernard, O. and Ghysdael, J. (1999). TEL is a sequence-specific transcriptional repressor. J. Biol. Chem. 274: 30132-30138. 10514502
Maki, K., et al. (2004). Leukemia-related transcription factor TEL is negatively regulated through extracellular signal-regulated kinase-induced phosphorylation. Mol. Cell. Biol. 24(8): 3227-37. 15060146
Roukens, M. G., et al. (2008a). Identification of a new site of sumoylation on Tel (ETV6) uncovers a PIAS-dependent mode of regulating Tel function. Mol. Cell. Biol. 28: 2342-2357. PubMed Citation: 18212042
Roukens, M. G., et al. (2008b). Downregulation of vertebrate Tel (ETV6) and Drosophila Yan is facilitated by an evolutionarily conserved mechanism of F-box-mediated ubiquitination. Mol. Cell. Biol. 28(13): 4394-406. PubMed Citation: 18426905
Maroulakou, I. G., Papas, T. S. and Green, J. E. (1994). Differential expression of ets-1 and ets-2 proto-oncogenes
during murine embryogenesis. Oncogene 9: 1551-65
Muthusamy, N., Barton, K. and Leiden, J. M. (1995). Defective activation and survival of T cells lacking the
Ets-1 transcription factor. Nature 377: 639-642
Nye, J.A. (1992). Interaction of murine ETS-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif. Genes and Dev. 6: 975-990
Ohshiro, T., Emori, Y. and Saigo, K. (2002). Ligand-dependent activation of breathless FGF receptor gene in Drosophila developing trachea. Mech. Dev. 114: 3-11. 12175485
O'Keefe, L., et al. (1997). Spitz and Wingless, emanating from distinct borders, cooperate to establish cell fate across the Engrailed domain in the Drosophila epidermis. Development 124(23): 4837-45
Olson, E. R., et al. (2012). Yan, an ETS-domain transcription factor, negatively modulates the Wingless pathway in the Drosophila eye. EMBO Rep. 12(10): 1047-54. PubMed Citation: 21869817
O'Neill, E.M., Rebay, I., Tjian, R., and Rubin, G.M. (1994). The activities of two ETS-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78: 137-147
Poirel, H., Oury, C., Carron, C., Duprez, E., Laabi, Y., Tsapis, A., Romana, S. P., Mauchauffe, M., le Coniat, M., Berger, R., Ghysdael, J. and Bernard, O. A. (1997). The TEL gene products: nuclear phosphoproteins with DNA binding properties. Oncogene 14: 349-357. 9018121
Poirel, H., Lopez, R. G., Lacronique, V., Della Valle, V., Mauchauffe, M., Berger, R., Ghysdael, J. and Bernard, O. A. (2000). Characterization of a novel ETS gene, TELB, encoding a protein structurally and functionally related to TEL. Oncogene 19: 4802-4806. 11032031
Price, M. D. and Lai, Z.-C. (1999).
The yan gene is highly conserved in Drosophila
and its expression suggests a complex role throughout development. Dev. Genes Evol. 209: 207-217
Qiao, F., et al. (2004). Derepression by depolymerization: structural insights into the regulation of Yan by Mae. Cell 118: 163-173. 15260987
Rebay, I. (1995). Yan functions as a general inhibitor of differentiation and is negatively regulated by acivation of the Ras1/MAPK pathway. Cell 80: 857-866
Rebay, I., et al. (2000). A genetic screen for novel components of the Ras/Mitogen-activated
protein kinase signaling pathway that interact with the yan gene of
Drosophila identifies split ends, a new RNA recognition
motif-containing protein. Genetics 154: 695-712
Riesgo-Escovar, J. R. and Hafen, E. (1997). Drosophila Jun kinase regulates expression of decapentaplegic via the
ETS-domain protein Aop and the AP-1 transcription factor DJun during dorsal closure. Genes Dev. 11:1717-1727
Rogge, R., et al. (1995). The role of yan in mediating the choice between cell division and differentiation.
Development 121: 3947-3958
Rohrbaugh, M., et al. (2002). Notch activation of yan expression is antagonized by RTK/Pointed signaling in the Drosophila eye. Curr. Biol. 12: 576-581. 11937027
Roukens, M. G., et al. (2010). Control of endothelial sprouting by a Tel-CtBP complex. Nat. Cell Biol. 12(10): 933-42. PubMed Citation: 20835243
Salzer, C. L., Elias, Y. and Kumar, J. P. (2010). The retinal determination gene eyes absent is regulated by the EGF receptor pathway throughout development in Drosophila. Genetics 184(1): 185-97. PubMed Citation: 19884307
Schober, M., Rebay, I. and Perrimon. N. (2005).
Function of the ETS transcription factor Yan in border cell migration.
Development 132(15): 3493-504. 16014514
Slack, C., Alic, N., Foley, A., Cabecinha, M., Hoddinott, M.P. and Partridge, L. (2015). The Ras-Erk-ETS-signaling pathway is a drug target for longevity. Cell 162(1):72-83.. PubMed ID: 26119340
Song, H., et al. (2005). Antagonistic regulation of Yan nuclear export by Mae and Crm1 may increase the stringency of the Ras response. Genes Dev. 19: 1767-1772. 16027171
Teleman, A. A., Hietakangas, V., Sayadian, A. C. and Cohen, S. M. (2008). Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab 7: 21-32. PubMed ID: 18177722
Tokusumi, T., et al. (2011). Germ line differentiation factor Bag of Marbles is a regulator of hematopoietic progenitor maintenance during Drosophila hematopoiesis.
Development 138(18): 3879-84. PubMed Citation: 21813570
Tootle, T. L., Lee, P. S. and Rebay, I. (2002). CRM1-mediated nuclear export and regulated activity of the Receptor Tyrosine Kinase antagonist YAN require specific interactions with MAE. Development 130: 845-857. 12538513
Treier, M., Bohmann, D. and Mlodzik, M. (1995).
JUN cooperates with the ETS domain protein pointed to
induce photoreceptor R7 fate in the Drosophila eye. Cell 83: 753-760. PubMed Citation: 8521492
Vivekanand, P., Tootle, T. L. and Rebay, I. (2004). MAE, a dual regulator of the EGFR signaling pathway, is a target of the Ets transcription factors PNT and YAN. Mech. Dev. 121: 1469-1479. 15511639
Wang, L. C., et al. (1997). Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J. 16(14): 4374-83. PubMed Citation: 9250681
Wang, L. C., et al. (1998). The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev 12: 2392-2402. PubMed Citation: 9694803
Webber, J. L., Zhang, J., Cote, L., Vivekanand, P., Ni, X., Zhou, J., Negre, N., Carthew, R. W., White, K. P. and Rebay, I. (2013a). The relationship between long-range chromatin occupancy and polymerization of the Drosophila ETS family transcriptional repressor Yan. Genetics 193(2): 633-649. PubMed ID: 23172856
Webber, J. L., Zhang, J., Mitchell-Dick, A. and Rebay, I. (2013b). 3D chromatin interactions organize Yan chromatin occupancy and repression at the even-skipped locus. Genes Dev 27(21): 2293-2298. PubMed ID: 24186975
Weber, U., Pataki, C., Mihaly, J. and Mlodzik, M. (2008). Combinatorial signaling by the Frizzled/PCP and Egfr pathways during planar cell polarity establishment in the Drosophila eye.
Dev. Biol. 316(1): 110-23. PubMed Citation: 18291359
Weng, M., Haenfler, J. M. and Lee, C. Y. (2012). Changes in Notch signaling coordinates maintenance and differentiation of the Drosophila larval optic lobe neuroepithelia. Dev Neurobiol 72: 1376-1390. PubMed ID: 22038743
Wood, L. D, et al. (2003). Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc. Natl. Acad. Sci 100(6): 3257-62. 12626745
Xu, C., et al. (2000). Overlapping activators and repressors delimit
transcriptional response to receptor tyrosine kinase
signals in the Drosophila eye. Cell 103: 87-97. PubMed Citation: 11051550
Yamamoto, D., et al. (1996). Genetic interactions of pokkuri with seven in absentia, tramtrack and downstream components of the sevenless pathway in R7 photoreceptor induction in Drosophila melanogaster. Roux's Arch. Dev. Biol. 205: 215-224
anterior open/yan
continued:
Biological Overview
| Evolutionary Homologs
| Regulation
| Developmental Biology
| Effects of Mutation
date revised: 10 July 2015
Home page: The Interactive Fly © 1995, 1996 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.