logo What's new in edition 100
June 1, 2024
Gene sites new with this edition

Gene sites new with this edition

bonus
Doublecortin-domain-containing echinoderm-microtubule-associated protein
Fatty acid synthase 1
glorund
Histamine-gated chloride channel subunit 1
pallidin
Phosphoethanolamine cytidylyltransferase
pretaporter
Spt5
Tropomyosin 1
What was new in recent past editions
[edition 99] January 2023
[edition 98] September 2023
[edition 97] May 2023
[edition 96] January 2023
[edition 95] September 2022
[edition 94] May 2022
[edition 93] January 2022
[edition 92] September 2021
[edition 91] May 2021
[edition 90] January 2021
[edition 89] September 2020

The Interactive Fly was first released July/August 1996, with updates provided at approximately one month intervals, through September 1997 (edition 13). Updating quarterly started with edition 14. With edition 40, the Interactive Fly began to schedule updates three times a year: fall, winter and spring.


Gene sites new with this edition of the Interactive Fly:

bonus
The canonical function of the Hippo signaling pathway is the regulation of organ growth. How this pathway controls cell-fate determination is less well understood. This study identified a function of the Hippo pathway in cell-fate decisions in the developing Drosophila eye, exerted through the interaction of Yorkie (Yki) with the transcriptional regulator Bonus (Bon), an ortholog of mammalian transcriptional intermediary factor 1/tripartite motif (TIF1/TRIM) family proteins. Instead of controlling tissue growth, Yki and Bon promote epidermal and antennal fates at the expense of the eye fate. Proteomic, transcriptomic, and genetic analyses reveal that Yki and Bon control these cell-fate decisions by recruiting transcriptional and post-transcriptional co-regulators and by repressing Notch target genes and activating epidermal differentiation genes. This work expands the range of functions and regulatory mechanisms under Hippo pathway control (Zhao, 2023).

Doublecortin-domain-containing echinoderm-microtubule-associated protein
Mechanoreceptor cells develop specialized mechanosensory organelles (MOs), where force-sensitive channels and supporting structures are organized in an orderly manner to detect forces. It is intriguing how MOs are formed. This issue was addressed by studying the MOs of fly ciliated mechanoreceptors. The main structure of the MOs is shown to be a compound cytoskeleton formed of short microtubules and electron-dense materials (EDMs). In a knock-out mutant of microtubule associated protein Doublecortin-domain-containing echinoderm-microtubule-associated protein (DCX-EMAP), this cytoskeleton is nearly absent, suggesting that DCX-EMAP is required for the formation of the MOs and in turn fly mechanotransduction. Further analysis reveals that DCX-EMAP expresses in fly ciliated mechanoreceptors and localizes to the MOs. Moreover, it plays dual roles by promoting the assembly/stabilization of the microtubules and the accumulation of the EDMs in the MOs. Therefore, DCX-EMAP serves as a core ultrastructural organizer of the MOs, and this finding provides novel molecular insights as to how fly MOs are formed (Song, 2023).

Fatty acid synthase 1
De novo lipogenesis is a highly regulated metabolic process, which is known to be activated through transcriptional regulation of lipogenic genes, including fatty acid synthase (FASN). Unexpectedly, this study found that the expression of FASN protein remains unchanged during Drosophila larval development from the second to the third instar larval stages (L2 to L3) when lipogenesis is hyperactive. Instead, acetylation of FASN is significantly upregulated in fast-growing larvae. This study further showed that lysine K813 residue is highly acetylated in developing larvae, and its acetylation is required for elevated FASN activity, body fat accumulation, and normal development. Intriguingly, K813 is autoacetylated by acetyl-CoA (AcCoA) in a dosage-dependent manner independent of acetyltransferases. Mechanistically, the autoacetylation of K813 is mediated by a novel P-loop-like motif (N-xx-G-x-A). Lastly, this study found that K813 is deacetylated by Sirt1, which brings FASN activity to baseline level. In summary, this work uncovers a previously unappreciated role of FASN acetylation in developmental lipogenesis and a novel mechanism for protein autoacetylation, through which Drosophila larvae control metabolic homeostasis by linking AcCoA, lysine acetylation, and de novo lipogenesis (Miao, 2022).

glorund
The Drosophila melanogaster protein Glorund (Glo) represses nanos (nos) translation and uses its quasi-RNA recognition motifs (qRRMs) to recognize both G-tract and structured UA-rich motifs within the nos translational control element (TCE). It has been shown previously that each of the three qRRMs is multifunctional, capable of binding to G-tract and UA-rich motifs, yet if and how the qRRMs combine to recognize the nos TCE remained unclear. This study determined solution structures of a nos TCEI_III RNA containing the G-tract and UA-rich motifs. The RNA structure demonstrated that a single qRRM is physically incapable of recognizing both RNA elements simultaneously. In vivo experiments further indicated that any two qRRMs are sufficient to repress nos translation. interactions of Glo qRRMs were probed with TCEI_III RNA using NMR paramagnetic relaxation experiments. The in vitro and in vivo data support a model whereby tandem Glo qRRMs are indeed multifunctional and interchangeable for recognition of TCE G-tract or UA-rich motifs. This study illustrates how multiple RNA recognition modules within an RNA-binding protein may combine to diversify the RNAs that are recognized and regulated (Warden, 2023).

Histamine-gated chloride channel subunit 1
In Drosophila, the clock that controls rest-activity rhythms synchronizes with light-dark cycles through either the blue-light sensitive cryptochrome (Cry) located in most clock neurons, or rhodopsin-expressing histaminergic photoreceptors. This study shows that, in the absence of Cry, each of the two histamine receptors Ort and HisCl1 contribute to entrain the clock whereas no entrainment occurs in the absence of the two receptors. In contrast to Ort, HisCl1 does not restore entrainment when expressed in the optic lobe interneurons. Indeed, HisCl1 is expressed in wild-type photoreceptors and entrainment is strongly impaired in flies with photoreceptors mutant for HisCl1. Rescuing HisCl1 expression in the Rh6-expressing photoreceptors restores entrainment but it does not in other photoreceptors, which send histaminergic inputs to Rh6-expressing photoreceptors. These results thus show that Rh6-expressing neurons contribute to circadian entrainment as both photoreceptors and interneurons, recalling the dual function of melanopsin-expressing ganglion cells in the mammalian retina (Alejevski, 2019).

pallidin

The Pallidin protein is a central subunit of a multimeric complex called biogenesis of lysosome-related organelles complex 1 (BLOC1) that regulates specific endosomal functions and has been linked to schizophrenia. Downregulation of Pallidin and other members of BLOC1 in the surface glia, the Drosophila equivalent of the blood-brain barrier, reduces and delays nighttime sleep in a circadian-clock-dependent manner. In agreement with BLOC1 involvement in amino acid transport, downregulation of the large neutral amino acid transporter 1 (LAT1)-like transporters JhI-21 and mnd, as well as of TOR (target of rapamycin) amino acid signaling, phenocopy Pallidin knockdown. Furthermore, supplementing food with leucine normalizes the sleep/wake phenotypes of Pallidin downregulation, and this study identified a role for Pallidin in the subcellular trafficking of JhI-21. Finally, evidence is provided that Pallidin in surface glia is required for GABAergic neuronal activity. These data identify a BLOC1 function linking essential amino acid availability and GABAergic sleep/wake regulation (Li, 2023).

Phosphoethanolamine cytidylyltransferase
Diet-induced obesity leads to dysfunctional feeding behavior. However, the precise molecular nodes underlying diet-induced feeding motivation dysregulation are poorly understood. Using a longitudinal high-sugar regime in Drosophila, this study sought to address how diet-induced changes in adipocyte lipid composition regulate feeding behavior. It was observed that subjecting adult Drosophila to a prolonged high-sugar diet degrades the hunger-driven feeding response. Lipidomics analysis reveals that longitudinal exposure to high-sugar diets significantly alters whole-body phospholipid profiles. By performing a systematic genetic screen for phospholipid enzymes in adult fly adipocytes, Phosphoethanolamine cytidylyltransferase (Pect) was identified as a critical regulator of hunger-driven feeding. Pect is a rate-limiting enzyme in the phosphatidylethanolamine (PE) biosynthesis pathway and the fly ortholog of human PCYT2. Disrupting Pect activity only in the Drosophila fat cells causes insulin resistance, dysregulated lipoprotein delivery to the brain, and a loss of hunger-driven feeding. Previously human studies have noted a correlation between PCYT2/Pect levels and clinical obesity. Now, these unbiased studies in Drosophila provide causative evidence for adipocyte Pect function in metabolic homeostasis. Altogether, this study has uncovered that PE phospholipid homeostasis regulates hunger response (Kelly, 2022).

pretaporter
Previous work has shown that the Arf1-mediated lipolysis pathway sustains stem cells and cancer stem cells (CSCs); its ablation resulted in necrosis of stem cells and CSCs, which further triggers a systemic antitumor immune response. This study shows that knocking down Arf1 in intestinal stem cells (ISCs) causes metabolic stress, which promotes the expression and translocation of ISC-produced damage-associated molecular patterns (DAMPs; Pretaporter [Prtp] and calreticulin [Calr]). DAMPs regulate macroglobulin complement-related (Mcr) expression and secretion. The secreted Mcr influences the expression and localization of enterocyte (EC)-produced Draper (Drpr) and LRP1 receptors (pattern recognition receptors [PRRs]) to activate autophagy in ECs for ATP production. The secreted ATP possibly feeds back to kill ISCs by activating inflammasome-like pyroptosis. This study identified an evolutionarily conserved pathway that sustains stem cells and CSCs, and its ablation results in an immunogenic cascade that promotes death of stem cells and CSCs as well as antitumor immunity (Aggarwal, 2022).

Spt5
Promoter proximal pausing of RNA Polymerase II (Pol II) is a critical transcriptional regulatory mechanism in metazoans that requires the transcription factor, DSIF (DRB sensitivity-inducing factor) and the negative elongation factor NELF. DSIF, composed of Spt4 and Spt5, establishes the pause by recruiting NELF to the elongation complex. However, the role of DSIF in pausing beyond NELF recruitment remains unclear. This study used a highly purified in vitro system and Drosophila nuclear extract to investigate the role of DSIF in promoter proximal pausing. Two domains of Spt5 were identified, the KOW4 and NGN domains, that directly facilitate Pol II pausing. The KOW4 domain promotes pausing through its interaction with the nascent RNA while the NGN domain does so through a short helical motif that is in close proximity to the non-transcribed DNA template strand. Removal of this sequence in Drosophila has a male-specific dominant negative effect. The alpha helical motif is also needed to support fly viability. It was also shown that the interaction between the Spt5 KOW1 domain and the upstream DNA helix is required for DSIF association with the Pol II elongation complex. Disruption of the KOW1-DNA interaction is dominant lethal in vivo. Finally, the KOW2-3 domain of Spt5 was shown to mediate the recruitment of NELF to the elongation complex. In summary, these results reveal additional roles for DSIF in transcription regulation and identify specific domains important for facilitating Pol II pausing (Dollinger, 2023).

Tropomyosin 1
Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. Tm1 orthoTm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Thus work reveals a new strategy for ensuring sequential activity of microtubule motors (Heber, 2024).


date revised: 1 June 2024

Home page: The Interactive Fly © 2022 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.