cactus
In addition to its function in embryonic development, Drosophila's NF-kappa B/rel-related gene dorsal (dl)
is expressed in larval and adult fat body where its RNA expression is enhanced upon
injury. Injury also leads to a rapid nuclear translocation of dl from the cytoplasm in fat body cells. The nuclear localization of dl during the immune
response is controlled by the Toll signaling pathway, comprising gene products that participate in
the intracellular part of the embryonic dorsoventral pathway. In mutants such as
Toll or cactus, which exhibit melanotic tumor phenotypes, dl is constitutively nuclear. Together,
these results point to a potential link between the Toll signaling pathway and melanotic tumor
induction. The melanotic tumor phenotype of Toll
and cactus is not dl dependent. These data underline the complexity of the Drosophila immune
response (Lemaitre, 1995).
There are a number of different controls on the expression of the antifungal polypeptide gene drosomycin in adults: the receptor Toll, intracellular components of the dorsoventral signaling pathway (Tube, Pelle, and Cactus), and the extracellular Toll ligand, Spätzle, but not the NF-kappaB related transcription factor Dorsal. Mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. In Tl-deficient adults, the cecropin A and, to a lesser extent, attacin, drosomycin and defensin genes are only minimally inducible, in contrast with the diptericin and drosocin genes, which remain fully inducible in this context. The drosomycin gene induction is not affected in mutants deficient in gastrulation defective, snake and easter, all upstream of spätzle in the dorsoventral pathway. The involvement of Spätzle in the drosomycin induction pathway is unexpected, since, in contrast with cat, pll, tub, and Tl, the spz mutant shows no striking zygotic phenotype. The partner of Cact in the drosomycin induction pathway has not yet been identified, but it is probably a member of the Rel family, possibly Dorsal-related immunity factor (Lemaitre, 1996).
hindsight expression in the amnioserosa is regulated by the dorsoventral pathway. Dorsal Hnt protein expression is reduced in genetically ventralized mutant embryos such as those produced by saxophone or cactus females. Reciprocally, dorsal Hnt expression expands ventrally in dorsalized embryos. Anterior midgut expression of Hnt is also affected by the dorsoventral pathway (Yip, 1997).
There are two distinct regulatory pathways controlling the expression of antimicrobial genes, the dorsoventral pathway and the immune deficiency (imd) gene. In contrast to the results with drosomycin, antibacterial genes, cecropin A1, diptericin, drosocin, attacin, and defensin do not give strong constitutive expression in dorsoventral pathway mutants. However, the level of constitutive expression of anti-bacterial genes in dorsoventral pathway mutants is higher than the basal level, and induction of Cecropin A genes is 4-fold lower in dorsoventral pathway mutants. The transcription of cact, dorsal, dif, pll, tub, Tl and spz genes, but not tub, are clearly up-regulated in response to immune challenge. Even though the same components of the dorsoventral pathway that are involved in antifungal response are also involved in antibacterial response, there is an additional requirement for the as yet uncloned imd gene product (Lemaitre, 1996).
Akiba H., et al. (1998). CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun
N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing
kinase. J. Biol. Chem. 273(21): 13353-8.
Aoki, T., et al. (1996). The ankyrin repeats but not the PEST-like sequences are required for signal-dependent degradation of
IkappaBalpha. Oncogene 12: 1159-1164
Armstrong, N. J., et al. (1998). Conserved Spatzle/Toll signaling in dorsoventral patterning of
Xenopus embryos. Mech. Dev. 71(1-2): 99-105.
Attar, R. M., et al. (1998). Expression of constitutively active IkappaB beta in T cells of
transgenic mice: persistent NF-kappaB activity is required for T-cell
immune responses. Mol. Cell. Biol. 18(1): 477-487.
Auphan, N., et al. (1995). Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity
through induction of I kappa B synthesis. Science 270: 286-290
Baud, V., et al. (1999). Signaling by proinflammatory cytokines: oligomerization of TRAF2
and TRAF6 is sufficient for JNK and IKK activation and target
gene induction via an amino-terminal effector domain. Genes Dev. 13(10): 1297-308.
Belvin, M. P., Jin, Y, and Anderson, K. V. (1995). Cactus protein degradation mediates Drosophila
dorsal-ventral signaling.
Genes Dev 9: 783-793
Beraud, C., Henzel, W. J. and Baeuerle, P. A. (1999). Involvement of regulatory and catalytic subunits of
phosphoinositide 3-kinase in NF-kappaB activation. Proc. Natl. Acad. Sci. 96(2): 429-34.
Bergmann, A., et al. (1996). A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech. Dev. 60: 109-123.
Cai, D., et al. (2004). IKKß/NF-kappaB activation causes severe muscle wasting in mice. Cell 119: 285-298. 15479644
Cantera, R., Kozlova, T. Barillas-Mury, C. and Kafatos, F. C. (1999) Muscles and innveravtion are affected by loss of Dorsal in the fruit fly, Drosophila melanogaster. Mol. Cell. Neurosci. 13: 131-141. Medline abstract: 10192771
Carneiro, K., et al. (2006). Graded maternal Short gastrulation protein contributes to embryonic dorsal-ventral patterning by delayed induction.
Dev. Biol. 296(1): 203-18. 16781701
Cao, Y., et al. (2001). IKKalpha provides an essential link between RANK signaling and Cyclin D1 expression during mammary gland development. Cell 107: 763-775. 11747812
Cheshire, J. L. and Baldwin, A. S. (1997). Synergistic activation of NF-kappaB by tumor necrosis factor alpha and gamma interferon via enhanced I kappaB alpha degradation
and de novo I kappaBbeta degradation. Mol. Cell. Biol. 17(11): 6746-6754.
Cohen, L., Henzel, W. J. and Baeuerle, P. A. (1998). IKAP is a scaffold protein of the IkappaB kinase complex. Nature 395(6699): 292-6.
Crepieux, P., et al. (1997). I kappaB alpha physically interacts with a cytoskeleton-associated
protein through its signal response domain. Mol. Cell. Biol. 17(12): 7375-7385.
Cuervo, A. M., et al. (1998). IkappaB is a substrate for a selective pathway of lysosomal
proteolysis. Mol. Biol. Cell 9(8): 1995-2010.
Darnay, B. G., et al. (1999). Activation of NF-kappaB by RANK requires tumor necrosis factor
receptor-associated factor (TRAF) 6 and NF-kappaB-inducing
kinase. Identification of a novel TRAF6 interaction motif. J. Biol. Chem. 274(12): 7724-31.
da Fonseca, R. N., et al. (2008). Self-regulatory circuits in dorsoventral axis formation of the short-germ beetle Tribolium castaneum. Dev. Cell 14: 605-615. PubMed Citation: 18410735
De Gregorio, E., Spellman, P. T., Rubin, G. M., and Lemaitre, B. (2001). Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. 98: 12590-12595. 11606746
Delhase, M., et al. (1999). Positive and negative regulation of IotakappaBeta kinase activity
through IKKbeta subunit phosphorylation. Science 284(5412): 309-313
Deng, L., et al. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2): 351-361. 11057907
Desterro, J. M., Rodriguez, M. S. and Hay, R. T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2: 233-239. 9734360
Espinosa, L., Bigas, A. and Mulero, M. C. (2014). Novel functions of chromatin-bound IkappaBalpha in oncogenic transformation. Br J Cancer [Epub ahead of print]. PubMed ID: 25233399
Fenwick, C. et al. (2000). A subclass of Ras proteins that regulate the degradation of IkappaB. Science 87: 869-873.
Fernandez, N. Q., et al. (2001). Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128: 2963-2974. 11532919
Fiorini, E., et al. (2002). Peptide-induced negative selection of thymocytes activates transcription of an NF-kappaB inhibitor. Molec. Cell 9: 637-648. 11931770
Gao, Z., et al. (2005). Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter. J. Biol. Chem. 280(22): 21091-8. Medline abstract: 15811852
Gay, N. J. and Ntwasa, M. (1993).
The Drosophila ankyrin repeat protein cactus has a
predominantly alpha-helical secondary structure. FEBS Lett 335: 155-60
Geisler, R., et al. (1992). cactus, a gene involved in dorsoventral pattern formation
of Drosophila, is related to the I kappa B gene family of
vertebrates. Cell 71: 613-21
Ghoda, L., Lin, X. and Greene, W. C. (1997). The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal
regulatory domain of IkappaBalpha and stimulates its degradation in vitro. J. Biol. Chem. 272(34): 21281-21288.
Gillespie, S. K. and Wasserman, S. A. (1994). Dorsal, a Drosophila Rel-like protein, is phosphorylated
upon activation of the transmembrane protein Toll. Mol Cell Biol 14: 3559-68
Govind, S., Brennan, L. and Steward, R. (1993). Homeostatic balance between dorsal and cactus proteins
in the Drosophila embryo. Development 117: 135-48
Greten, F. R., et al. (2007). NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta.
Cell 130(5): 918-31. Medline abstract: 17803913
Hatakeyama, S., et al. (1999). Ubiquitin-dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase
Skp1/Cul 1/F-box protein FWD1. Proc. Natl. Acad. Sci. 96(7): 3859-63.
Hattori, K., et al. (1999). Molecular dissection of the interactions among IkappaBalpha, FWD1, and Skp1 required for
ubiquitin-mediated proteolysis of IkappaBalpha. J. Biol. Chem. 274(42): 29641-7.
Heckscher, E. S., et al. (2007). NF-kappaB, IkappaB, and IRAK control glutamate receptor density at the Drosophila NMJ. Neuron 55: 859-873. Medline abstract: 17880891
Hirano, F., et al. (1998). Alternative splicing variants of IkappaB beta establish differential NF-kappaB signal responsiveness in human cells. Mol. Cell. Biol. 18(5): 2596-2607.
Hu, Y., et al. (1999). Abnormal Morphogenesis But Intact IKK Activation in Mice
Lacking the IKKalpha Subunit of IkappaB Kinase. Science 284(5412): 316-320
Huang, T. T., et al. (2003). Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115: 565-576. 14651848
Huxford, T., et al. (1998). The crystal structure of the IkappaBalpha/NF-kappaB complex
reveals mechanisms of NF-kappaB inactivation.
Cell 95(6): 759-70.
Isoda, K. and Nusslein-Volhard, C. (1994). Disulfide cross-linking in crude embryonic lysates reveals
three complexes of the Drosophila morphogen dorsal and
its inhibitor cactus. Proc. Natl. Acad. Sci. 91: 5350-4
Jacobs, M. D. and Harrison, S. C. (1998). Structure of an IkappaBalpha/NF-kappaB complex. Cell 95(6): 749-58.
Kane, L. P., et al. (1999). Induction of NF-kappaB by the Akt/PKB kinase.
Curr. Biol. 9: 601-604.
Kato, T., et al. (2003). CK2 is a c-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response. Molec. Cell 12: 829-839. 14580335
Kidd, S. (1992). Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 71: 623-635
Kim, Y. S., et al. (2000). Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J. Biol. Chem. 275(3): 2071-2079.
Klement, J. F., et al. (1996). IkappaBalpha deficiency results in a sustained NF-kappaB response
and severe widespread dermatitis in mice. Mol. Cell. Biol. 16: 2341-2349
Klug, C. A., et al. (1994). The v-abl tyrosine kinase negatively regulates NF-kappa B/Rel factors and blocks
kappa gene transcription in pre-B lymphocytes. Genes Dev 8: 678-687.
Kralova, J., et al. (1996).
Synergistic stimulation of avian IkappaBalpha transcription by rel
and fos/jun factors. Oncogene 12: 2595-2604
Kroll, M., et al. (1997). The carboxy-terminus of I kappaB alpha determines susceptibility to
degradation by the catalytic core of the proteasome. Oncogene 15(15): 1841-1850.
Kubota, K., Keith, F. J. and Gay, N. J. (1993). Relocalization of Drosophila dorsal protein can be
induced by a rise in cytoplasmic calcium concentration and the expression of constitutively active but not wild-type Toll receptors. Biochem J 296 ( Pt 2): 497-503
Kubota, K. and Gay, N. J. (1995a). Calcium destabilises Drosophila cactus protein and
dephosphorylates the dorsal transcription factor. Biochem Biophys Res Commun 214: 1191-1196
Kubota, K. and Gay, N. J. (1995b). The dorsal protein enhances the biosynthesis and stability
of the Drosophila I kappa B homologue cactus. Nucleic Acids Res 23: 3111-3118
Lallena, M. J., et al. (1999). Activation of IkappaB kinase beta by protein kinase C
isoforms. Mol. Cell. Biol. 19(3): 2180-8.
Latimer M., et al. (1998). The N-terminal domain of IkappaB alpha masks the nuclear localization signal(s) of p50 and c-Rel homodimers. Mol. Cell. Biol. 18(5): 2640-2649.
Lee, F. S., et al. (1998). MEKK1 activates both IkappaB kinase alpha and IkappaB kinase beta. Proc. Natl. Acad. Sci. 95(16): 9319-9324.
Li, Q., et al. (1999a). Severe liver degeneration in mice lacking the IkappaB kinase 2
gene. Science 284(5412): 321-325
Li, Q., et al. (1999b). IKK1-deficient mice exhibit abnormal development of skin and
skeleton. Genes Dev. 13(10): 1322-8.
Lin, P.-H., Huang, L. H, and Steward, R. (2000). Cactin, a conserved protein that interacts with the Drosophila IkappaB protein
Cactus and modulates its function. Mech. Dev. 94: 57-65
Lin, R., et al. (1996). Phosphorylation of IkappaBalpha in the C-terminal PEST domain
by casein kinase II affects intrinsic protein stability.
Mol. Cell. Biol. 16(4): 1401-1409.
Lin, X., et al. (1998). Molecular determinants of NF-kappaB-inducing kinase action. Mol. Cell. Biol. 18(10): 5899-5907.
Liu, Z. P., Galindo, R. L. and Wasserman, S. A. (1997). A role for CKII phosphorylation of the Cactus PEST domain in
dorsoventral patterning of the Drosophila embryo. Genes Dev. 11(24): 3413-3422
Liu, L., et al. (1998). DNA-dependent protein kinase phosphorylation of IkappaB alpha and IkappaB beta regulates NF-kappaB DNA binding properties. Mol. Cell. Biol. 18(7): 4221-4234.
Lehming, N., et al. (1995). Interactions of a Rel protein with its inhibitor. Proc Natl Acad Sci 92: 10242-10246
Lemaitre, B., et al. (1995). Functional analysis and regulation of nuclear import of
dorsal during the immune response in Drosophila. EMBO J 14: 536-545
Lemaitre, B., et al. (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983
Luecke, H. F. and Yamamoto, K. R. (2005). The glucocorticoid receptor blocks P-TEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression.
Genes Dev. 19(9): 1116-27. 15879558
Luque, I. and Gelinas, C. (1998). Distinct domains of IkappaBalpha regulate c-Rel in the cytoplasm
and in the nucleus. Mol. Cell. Biol. 18(3): 1213-1224.
McKinsey, T. A., et al. (1996). Inactivation of IkappaBbeta by the tax protein of human T-cell
leukemia virus type 1: a potential mechanism for constitutive
induction of NF-kappaB. Mol. Cell. Biol. 16: 2083-2090
Oeth, P. and Mackman, N. (1995). Salicylates inhibit lipopolysaccharide-induced transcriptional
activation of the tissue factor gene in human monocytic cells. Blood 86: 4144-4152
McKinsey, T. A., Chu, Z. L. and Ballard, D. W. (1997). Phosphorylation of the PEST domain of IkappaBbeta regulates the
function of NF-kappaB/IkappaBbeta complexes. J. Biol. Chem. 272(36): 22377-22380.
Mercurio, F., et al. (1997). IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for
NF-kappaB activation. Science 278(5339): 860-866.
Mercurio, F., et al. (1999). IkappaB kinase (IKK)-associated protein 1, a common
component of the heterogeneous IKK complex. Mol. Cell. Biol. 19(2): 1526-38.
Muzio M., et al. (1998). The human toll signaling pathway: divergence of nuclear factor
kappaB and JNK/SAPK activation upstream of tumor necrosis
factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187(12): 2097-101.
Nagata, R., Akai, N., Kondo, S., Saito, K., Ohsawa, S. and Igaki, T. (2022). Yorkie drives supercompetition by non-autonomous induction of autophagy via bantam microRNA in Drosophila. Curr Biol 32(5): 1064-1076. PubMed ID: 35134324
Nakano, H., et al. (1998). Differential regulation of IkappaB kinase and by two upstream
kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc. Natl. Acad. Sci. 95(7): 3537-3542.
Nemoto, S, DiDonato, J. A. and Lin, A. (1998). Coordinate regulation of IkappaB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-kappaB-inducing kinase. Mol. Cell. Biol. 18(12): 7336-7343.
Nicolas, E., et al. (1998). In vivo regulation of the IkappaB homologue cactus during the
immune response of Drosophila. J. Biol. Chem. 273(17): 10463-10469.
Ninomiya-Tsuji, J., et al. (1998). The kinase TAK1 can activate the NIK-I kappaB as well as the
MAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724): 252-6.
Ninomiya-Tsuji, J., et al. (1999). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1
signalling pathway. Nature 398(6724): 252-6.
Ooi, J. Y., Yagi, Y., Hu, X. and Ip, Y. T. (2002). The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 3: 82-87. 11751574
Paddibhatla, I., Lee, M. J., Kalamarz, M. E., Ferrarese, R. and Govind, S. (2010). Role for sumoylation in systemic inflammation and immune homeostasis in Drosophila larvae. PLoS Pathog. 6(12): e1001234. PubMed Citation: 21203476
Perona, R., et al. (1997). Activation of the nuclear factor-KB by
Rho, CDC42, and Rac-1 proteins. Genes Dev. 11: 463-475
Peters, R. T., Liao, S.-M. and Maniatis, T. (2000). IKKepsilon is part of a novel PMA-inducible IkappaB kinase
complex. Molec. Cell 5: 513-522
Pomerantz, J. L. and Baltimore, D. (1999). NF-kappaB activation by a signaling complex containing TRAF2,
TANK and TBK1, a novel IKK-related kinase. EMBO J. 18: 6694-6704.
Qiu, P. Pan, P. C. and Govind, S. (1998). A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125(10): 1909-1920.
Ran, R., et al. (2004). Hsp70 promotes TNF-mediated apoptosis by binding IKKgamma and impairing NF-kappaB survival signaling. Genes Dev. 18: 1466-1481. 15198984
Ray, P., et al. (1995). Cloning of a differentially expressed I kappa B-related
protein. J Biol Chem 270: 10680-10685
Reach, M., et al. (1996). A gradient of Cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev. Biol. 180: 353-364
Regnier, C. H., et al. (1997). Identification and characterization of an IkappaB kinase. Cell 90(2): 373-383.
Rothwarf, D. M., et al. (1998). IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395(6699): 297-300.
Rupec, R. A., et al. (2005). Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity 22(4): 479-91. PubMed citation: 15845452
Sachdev, S., Hoffmann, A. and Hannink, M. (1998a). Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: the IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol. Cell. Biol.18(5): 2524-2534.
Sachdev, S. and Hannink, M. (1998b). Loss of IkappaB alpha-mediated control over nuclear import and DNA
binding enables oncogenic activation of c-Rel. Mol. Cell. Biol. 18(9): 5445-56.
Sanz, L., Sanchez, P., Lallena, M. J., Diaz-Meco, M. T., and Moscat, J. (1999). The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J. 18: 3044-3053. 10356400
Scheinman, R. I., et al. (1995). Role of transcriptional activation of I kappa B alpha in mediation of
immunosuppression by glucocorticoids. Science 270: 283-286
Schmidt, C., et al. (2003). Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Molec. Cell 12: 1287-1300. 14636585
Silverman, N., et al. (2003). Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J. Biol. Chem. 278: 48928-48934. 14519762
Simeonidis S., et al. (1999). Mechanisms by which IkappaB proteins control NF-kappaB
activity. Proc. Natl. Acad. Sci. 96(1): 49-54.
Song, H.Y., et al. (1997). Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation
of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK)
pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. Sci. 94(18): 9792-6.
Spencer, E., Jiang, J. and Chen, Z. J. (1999). Signal-induced ubiquitination of IkappaBalpha by the F-box
protein Slimb/beta-TrCP. Genes Dev. 13(3): 284-94.
Stuhlmeier, K. M., Kao, J. J. and Bach, F. H. (1997). Arachidonic acid influences proinflammatory gene induction by
stabilizing the inhibitor-kappaBalpha/Nuclear factor-kappaB
(NF-kappaB) complex, thus suppressing the nuclear translocation of
NF-kappaB. J. Biol. Chem. 272(39): 24679-24683.
Su, F. and Schneider, R. J. (1996). Hepatitis B virus HBx protein activates transcription factor
NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related
proteins. J. Virol. 70: 4558-4566
Takeda, K., et al. (1999). Limb and skin abnormalities in mice lacking IKKalpha. Science 284(5412): 313-316
Tang, G., et al. (2001). Blocking Caspase-3-mediated proteolysis of IKKß suppresses TNF-alpha-induced apoptosis. Molec. Cell 8: 1005-1016. 11741536
Tatei, K. and Levine, M. (1995). Specificity of Rel-inhibitor interactions in Drosophila
embryos. Mol Cell Biol 15: 3627-3634
Tran, K., Merika, M. and Thanos, D. (1997). Distinct functional properties of IkappaB alpha and IkappaB beta.
Mol. Cell. Biol. 17(9): 5386-5399.
Wang, C., et al. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK.
Nature 412: 346-351. 11460167
Werner, S. L., et al. (2008). Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20. Genes Dev. 22(15): 2093-101. PubMed Citation: 18676814
Whalen, A. M. and Steward, R. (1993). Dissociation of the dorsal-cactus complex and
phosphorylation of the dorsal protein correlate with the
nuclear localization of dorsal. J Cell Biol 123: 523-34
Winston, J. T., et al. (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates
specifically with phosphorylated destruction motifs in
IkappaBalpha and beta-catenin and stimulates IkappaBalpha
ubiquitination in vitro. Genes Dev. 13(3): 270-83.
Woronicz, J. D., et al. (1997). IkappaB kinase-beta: NF-kappaB activation and complex
formation with IkappaB kinase-alpha and NIK. Science 278(5339): 866-869.
Wu, L. P. and Anderson, K. V. (1998). Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392(6671): 93-97.
Yaron, A., et al. (1997). Inhibition of NF-kappaB cellular function via specific targeting of
the IkappaB-ubiquitin ligase. EMBO J. 16(21): 6486-6494.
Yaron, A., et al. (1998). Identification of the receptor component of the
IkappaBalpha-ubiquitin ligase. Nature 396(6711): 590-4.
Yin, M. J., Yamamoto, Y. and Gaynor, R. B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B
kinase-beta. Nature 396(6706): 77-80.
Yip, M.L, Lamka, M. L. and Lipshitz, H. D. (1997). Control of germ-band retraction in Drosophila by the zinc-finger protein HINDSIGHT. Development 124 (11): 2129-2141.
Zandi, E., et al. (1997). The IkappaB kinase complex (IKK) contains two kinase subunits,
IKKalpha and IKKbeta, necessary for IkappaB phosphorylation
and NF-kappaB activation. Cell 91: 243-252.
cactus:
Biological Overview
| Evolutionary Homologs
| Regulation
| Developmental Biology
| Effects of Mutation
date revised: 15 October 2011
Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.