BarH1 and BarH2
Early expression is found in anterior segments, the labrium, maxilla and procephalic lobes at 5.5 to 6.5 hours into development. Other staining is seen in the mandible and procephalic lobe [Image]. Later,
BarH1 and BarH2 are coexpressed in cells of the embryonic central and peripheral nervous systems. Positive cells are found in the procephalic lobe, antenna-maxillary complex, labium, hypopharynx and clypeolabrum [Images]. Expression in the brain is apparent. In each case the Bar proteins are expressed in a subset of neurons.
In external sensory organs, their expression is marked in thecogens (glial cells) and neurons late in development (Higashijima, 1992b).
BarH1 and BarH2 are not only specifically coexpressed in the developing eye, but are also functionally required in R1/R6 prephotoreceptors and primary pigment cells in developing ommatidia (see The Drosophila Adult Ommatidium: Illustration and explanation with Quicktime animation). They are also essential for normal lens and pigment cell formation, and for the elimination of excess cells from mature ommatidia (Higashijima, 1992a).
Transient overexpression of BarH1 or BarH2 in the morphogenetic furrow of the developing eye produces a characteristic Bar-like eye malformation. It is suggested that Bar overexpression results in suppression of the anterior progression of the morphogenetic furrow and inhibition of reinitiation of normal ommatidial differentiation (Kojima, 1993).
Mutation of roughex perturbs cell fate determination. Many rux mutant clusters contain multiple boss-expressing cells. In some of these clusters, R8 cells are missing. There is also a reduction in the number of cells expressing bar and Seven-up. This may be due to errors in cell fate determination. Alternatively, the reduced number of cells expressing these markers may reflect cell death. Extensive cell death is seen in rux mutants beginning with the MF and extending to the posterior edge of the disc. In rux mutant discs, neuronal differentiation is delayed by approximately 6 hours of development (Thomas, 1994).
The simplest external sensory organ (es) found in the thorax and abdomen consists of a neuron and a set of two support cells. The glial cell (or thecogen) forms a sheath around the tip of a dendrite, whereas the outer support cells, the trichogen and tormogen, secrete cuticule structures. It is the thecogen cell (a glial type) that specifically expresses BarH1. The es neurons express both BarH1 and BarH2. These cells also produce Prospero and Cut, but not under control of Bar (Higashijima, 1992b).
Brennan, C. A., et al. (2001). Broad-complex, but not Ecdysone receptor, is required for progression of the morphogenetic furrow in the Drosophila eye. Development 128: 1-11. PubMed ID: 11092806
Bulfone, A., Menguzzato, E., Broccoli, V., Marchitiello, A., Gattuso, C., Mariani, M., Consalez, G. G. Martinez, S., Ballabio, A. and Banfi, S. (2000). Barhl1, a gene belonging to a new subfamily of mammalian homeobox genes, is expressed in migrating neurons of the CNS. Hum. Mol. Genet. 9: 1443-1452. PubMed ID: 10814725
Campbell, G. (2002). Distalization of the Drosophila leg by graded EGF-receptor activity. Nature 418: 781-785. PubMed ID: 12181568
Campbell, G. (2005). Regulation of gene expression in the distal region of the Drosophila leg by the Hox11 homolog, C15. Dev. Biol. 278(2): 607-18. PubMed ID: 15680373
Crew, J. R., Batterham, P. and Pollock, J. A. (1997). Developing compound eye in lozenge mutants of Drosophila: lozenge expression in the R7 equivalence group. Dev. Genes and Evol. 206(8): 481-493
Daga, A., et al. (1996). Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev 10: 1194-1205. PubMed ID: 8675007
Del Signore, S. J., Hayashi, T. and Hatini, V. (2012). odd-skipped genes and lines organize the notum anterior-posterior axis using autonomous and non-autonomous mechanisms. Mech Dev 129: 147-161. PubMed ID: 22613630
Edelman, D. B., Meech, R. and Jones, F. S. (2000). The homeodomain protein Barx2 contains activator and repressor domains and interacts with members of the CREB family. J. Biol. Chem. 275: 21737-21745. PubMed ID: 10781615
Epps, J. L., Jones, J. B. and Tanda, S. (1997). oroshigane, a new segment polarity gene of Drosophila
melanogaster, functions in Hedgehog signal transduction. Genetics 145 (4): 1041-1052. PubMed ID: 9093856
Fu, W. and Noll, M. (1997). The Pax2 homolog sparkling is required for development of cone and pigment cells in the Drosophila eye. Genes Dev. 11(16): 2066-2078. PubMed ID: 9284046
Garces, A., Bogdanik, L., Thor, S. and Carroll, P. (2006). Expression of Drosophila BarH1-H2 homeoproteins in developing dopaminergic cells and segmental nerve a (SNa) motoneurons. Eur. J. Neurosci. 24(1): 37-44. PubMed ID: 16882006
Gauchat, D., et al. (2000). Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc. Natl. Acad. Sci. 97: 4493-4498. PubMed ID: 10781050
Goldstein, R. E., et al. (2005). An eh1-like motif in Odd-skipped mediates recruitment of Groucho and repression in vivo. Mol. Cell. Biol. 25(24): 10711-20. PubMed ID: 16314497
Hayashi, T., Kojima, T. and Saigo, K. (1998). Specification of primary pigment cell and outer
photoreceptor fates by BarH1 homeobox gene in the
developing Drosophila eye. Dev. Biol. 200(2): 131-145. PubMed ID: 9705222
Higashijima, S., Kojima, T., Michiue, T., Ishimaru, S., Emori, Y. and Saigo, K. (1992a). Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes & Dev. 6(1): 50-60. PubMed ID: 1346120
Higashijima, S., Michiue, T., Emori, Y. and Saigo, K. (1992b). Subtype determination of Drosophila embryonic external sensory organs by redundant homeo box genes BarH1 and BarH2. Genes and Development 6(6): 1005-18 . PubMed ID: 1350558
Hou, K., Jiang, H., Karim, M. R., Zhong, C., Xu, Z., Liu, L., Guan, M., Shao, J. and Huang, X. (2019). A critical E-box in Barhl1 3' enhancer is essential for auditory hair cell differentiation. Cells 8(5). PubMed ID: 31096644
Hjalt, T. A. and Murray, J. C. (1999). The human BARX2 gene: genomic structure, chromosomal localization, and single nucleotide polymorphisms. Genomics 62: 456-459. PubMed ID: 10644443
Jones, F. S., et al (1997). Barx2, a new homeobox gene of the Bar class, is expressed in neural
and craniofacial structures during development. Proc. Natl. Acad. Sci. 94 (6): 2632-2637. PubMed ID: 9122247
Kim, B. M., Buchner, G., Miletich, I., Sharpe, P. T., Shivdasani, R. A. (2005).
The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial
identity through inhibition of transient Wnt signaling. Dev. Cell 8(4): 611-22. PubMed ID: 15809042
Kojima, T., Ishimaru, S., Higashijima, S., Takayama, E., Akimaru, H., Sone, M., Emori, Y. and Saigo, K. (1991). Identification of a different-type homeobox gene, BarH1, possible causing Bar (B) and Om(1D) mutations in Drosophila. Proc. Natl. Acad. Sci. 88(10): 4343-7. PubMed ID: 1674606
Kojima, T., Sone, M., Michiue, T and Saigo, K. (1993). Mechanism of induction of Bar-like eye malformation by transient overexpression of Bar homeobox genes in Drosophila melanogaster. Genetics 88: 85-91. PubMed ID: 7901124
Kojima, T., Sato, M. and Saigo, K. (2000). Formation and specification of distal leg segments in Drosophila by dual Bar
homeobox genes, BarH1 and BarH2. Development 127: 769-778. PubMed ID: 10648235
Kojima, T., Tsuji, T. and Saigo, K. (2005). A concerted action of a paired-type homeobox gene, aristaless, and a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the Drosophila leg. Dev. Biol. 279(2): 434-45. PubMed ID: 15733670
Li, S., et al. (2002). Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene. Development 129: 3523-3532. PubMed ID: 12091321
Lim, J. and Choi, K. W., et al. (2003). Bar homeodomain proteins are anti-proneural in the Drosophila eye: transcriptional repression of atonal by Bar prevents ectopic retinal neurogenesis. Development 130: 5965-5974. PubMed ID: 14573515
Lim, J. and Choi, K.-W. (2004). Induction and autoregulation of the anti-proneural gene Bar during retinal neurogenesis in Drosophila. Development 131: 5573-5580. PubMed ID: 15496446
Lopes, C., et al. (2006). BARHL1 homeogene, the human ortholog of
the mouse Barhl1 involved in cerebellum development, shows regional and
cellular specificities in restricted domains of developing human central nervous
system Biochem. Biophy. Res. Comm. 339: 296-304. PubMed ID: 16307728
Meech, R., et al. (2005). The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development 132: 2135-2146. PubMed ID: 1580000
Meech, R., Edelman, D. B., Jones, F. S. Makarenkova, H. P. (2005). The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development 132(9): 2135-46. PubMed ID: 15800003
Mo, A., Li, S., Yang, X. and Xiang, M. (2004). Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 131: 1607-1618. PubMed ID: 14998930
Nusinow, D., Greenberg, L. and Hatini, V. (2008). Reciprocal roles for bowl and lines in specifying the peripodial epithelium and the disc proper of the Drosophila wing primordium. Development 135: 3031-3041. PubMed ID: 18701548
Offner, N., et al. (2005). The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin- and shh-expressing cells. Development 132: 1807-1818. PubMed ID: 15772136
Patterson, K. D., et al. (2000). Distinct expression patterns for two Xenopus Bar homeobox genes. Dev. Genes Evol. 210: 140-144. PubMed ID: 11180814
Peden, E., et al. (2007). Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes Dev 21: 3195-3207. PubMed ID: 18056429
Poggi, L., et al. (2004). The homeobox gene Xbh1 cooperates with proneural genes to specify ganglion cell fate within the Xenopus neural retina. Development 131: 2305-2315. PubMed ID: 15102701
Pueyo, J. I., et al. (2000). Proximal-distal leg development in Drosophila requires the apterous gene and the Lim1 homologue dlim1 Development 127: 5391-5402. PubMed ID: 11076760
Pueyo, J. I. and Couso, J. P. (2004). Chip-mediated partnerships of the homeodomain proteins Bar and Aristaless with the LIM-HOM proteins Apterous and Lim1 regulate distal leg development. Development 131: 3107-3120. PubMed ID: 15175252
Saba, R., Johnson, J. E. and Saito, T. (2005). Commissural neuron identity is specified by a homeodomain protein, Mbh1, that is directly downstream of Math1. Development 132: 2147-2155. PubMed ID: 15788459
Saito, T., Sawamoto, K., Okano, H., Anderson, D. J. and Mikoshiba, K. (1998). Mammalian BarH homologue is potential regulator of neural bHLH genes. Dev. Biol. 199: 216-225. PubMed ID: 9698441
Sato, A., et al. (1999). Dfrizzled-3, a new Drosophila Wnt receptor, acting as an attenuator of
Wingless signaling in wingless hypomorphic mutants. Development 126: 4421-4430. PubMed ID: 10498678
Sato, M, et al. (1999). Bar homeobox genes are latitudinal prepattern genes in the developing
Drosophila notum whose expression is regulated by the concerted functions
of decapentaplegic and wingless. Development 126: 1457-1466. PubMed ID: 10068639
Stevens, T. A., Iacovoni, J. S., Edelman, D. B. and Meech, R. (2004). Identification of novel binding elements and gene targets for the homeodomain protein BARX2. J. Biol. Chem. 279(15): 14520-30. PubMed ID: 14744868
Thomas, B. J., et al. (1994). Cell cycle progression in the developing Drosophila eye:
roughex encodes a novel protein required for the
establishment of G1. Cell 77: 1003-1014. PubMed ID: 8020091
Tissier-Seta, J.-P., et al. (1995). Barx1, a new mouse homeodomain transcription factor expressed in cranio-facial ectomesenchyme and the stomach. Mech. Dev. 51: 3-15. PubMed ID: 7669690
Tsuji, T., et al. (2000). Requirements of Lim1, a Drosophila LIM-homeobox gene, for normal leg and
antennal development. Development 127: 4315-4323. PubMed ID: 11003832
Tucker, A. S, Matthews, K.L. and Sharpe, P. T. (1998). Transformation of tooth type induced by inhibition of BMP signaling. Science 282(5391): 1136-8. PubMed ID: 9804553
BarH1 and BarH2 :
Biological Overview
| Evolutionary Homologs
| Regulation
| Developmental Biology
| Effects of Mutation
date revised: 10 July 2019
Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.