|
What's new in edition 70 April 2014 Gene sites new with this edition |
-
The Interactive Fly was first released July/August 1996, with updates provided at approximately one month intervals, through September 1997 (edition 13). Updating quarterly started with edition 14. With edition 40, the Interactive Fly began to schedule updates three times a year: fall, winter and spring.
- Gene sites new with this edition of the Interactive Fly:
-
- Chromosome associated protein D3
-
A conserved interaction between RB proteins and the Condensin II protein CAP-D3 is important for ensuring uniform chromatin condensation during mitotic prophase (Longworth, 2008). The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. This study shows that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. The data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes (Longworth, 2012).
- Cp110
-
CP110 is a centriole protein implicated in the regulation of cell division, centriole duplication, and centriole length and in the suppression of ciliogenesis. Surprisingly, this study reports that mutant flies lacking CP110 (CP110Δ) were viable and fertile and had no obvious defects in cell division, centriole duplication, or cilia formation. CP110 was shown to have at least three functions in flies. First, it subtly influences centriole length by counteracting the centriole-elongating activity of several centriole duplication proteins. Specifically, centrioles are ~10% longer than normal in CP110Delta mutants and ~20% shorter when CP110 is overexpressed. Second, CP110 ensures that the centriolar microtubules do not extend beyond the distal end of the centriole, as some centriolar microtubules can be more than 50 times longer than the centriole in the absence of CP110. Finally, and unexpectedly, CP110 suppresses centriole overduplication induced by the overexpression of centriole duplication proteins. These studies identify novel and surprising functions for CP110 in vivo in flies (Franz, 2013).
- Debra
-
A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, Drosophila enhancer-trap P(Gal4) lines were screened showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, debra overexpression, as well as debra silencing mediated by RNA interference, were achieved. Experiments conducted with a conditional driver that allowed transgene expression to be resticted in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: (1) debra levels must be precisely regulated to support normal long-term memory, (2) the role of debra in this process is physiological rather than developmental, and (3) debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. This work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process (Kottler, 2011).
- Inositol-requiring enzyme-1
-
The unfolded protein response (UPR) is composed by homeostatic signaling pathways that are activated by excessive protein misfolding in the endoplasmic reticulum. Ire1 signaling is an important mediator of the UPR, leading to the activation of the transcription factor Xbp1. This study shows that Drosophila Ire1 mutant photoreceptors have defects in the delivery of rhodopsin-1 to the rhabdomere and in the secretion of Spacemaker/Eyes Shut into the interrhabdomeral space. However, these defects are not observed in Xbp1 mutant photoreceptors. Ire1 mutant retinas have higher mRNA levels for targets of regulated Ire1-dependent decay (RIDD), including for the Fatty acid transport protein (Fatp). Importantly, the downregulation of fatp by RNAi rescues the rhodopsin-1 delivery defects observed in Ire1 mutant photoreceptors. These results show that the role of Ire1 during photoreceptor differentiation is independent of Xbp1 function and demonstrate the physiological relevance of the RIDD mechanism in this specific paradigm (Coelho, 2013).
- Leak/Robo2
-
Transcription factors establish neural diversity and
wiring specificity; however, how they orchestrate
changes in cell morphology remains poorly understood.
The Drosophila Roundabout (Robo) receptors
regulate connectivity in the CNS, but how their
precise expression domains are established is unknown.
This study shows that the homeodomain transcription
factor Hb9 acts upstream of Robo2 and
Robo3 to regulate axon guidance in the Drosophila
embryo. In ventrally projecting motor neurons, hb9
is required for robo2 expression, and restoring
Robo2 activity in hb9 mutants rescues motor axon
defects. Hb9 requires its conserved repressor
domain and functions in parallel with Nkx6 to regulate
robo2. Moreover, hb9 can regulate the mediolateral
position of axons through robo2 and robo3,
and restoring robo3 expression in hb9 mutants rescues
the lateral position defects of a subset of neurons.
Altogether, these data identify Robo2 and
Robo3 as key effectors of Hb9 in regulating nervous
system development (Santiago, 2014).
- Peroxinectin-like
-
Prostaglandins (PGs)-lipid signals produced downstream of cyclooxygenase (COX) enzymes-regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. This study defines a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton-temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling (Spracklen, 2014).
- Ubiquitin activating enzyme 1
-
Ubiquitination is an essential process regulating turnover of proteins for basic cellular processes such as the cell cycle and cell death (apoptosis). Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Conjugation of target proteins with ubiquitin is then mediated by ubiquitin ligases (E3). Ubiquitination has been well characterized using mammalian cell lines and yeast genetics. However, the consequences of partial or complete loss of ubiquitin conjugation in a multi-cellular organism are not well understood. This study reports the characterization of Uba1, the only E1 in Drosophila. Weak and strong Uba1 alleles behave genetically differently with sometimes opposing phenotypes. Whereas weak Uba1 alleles protect cells from cell death, clones of strong Uba1 alleles are highly apoptotic. Strong Uba1 alleles cause cell cycle arrest which correlates with failure to reduce cyclin levels. Surprisingly, clones of strong Uba1 mutants stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner giving rise to overgrowth phenotypes of the mosaic fly. It was demonstrated that the non-autonomous overgrowth is caused by failure to downregulate Notch signaling in Uba1 mutant clones. In summary, the phenotypic analysis of Uba1 demonstrates that impaired ubiquitin conjugation has significant consequences for the organism, and may implicate Uba1 as a tumor suppressor gene (Lee, 2008).
date revised: 28 April 2014
Home page: The Interactive Fly © 2013 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.