Medea
Abdollah, S., et al. (1997). TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J. Biol. Chem. 272: 27678-27685. PubMed Citation: 9346908
Abe, T., et al. (2005). Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A. Mech. Dev. 122: 671-680. 15817224
Adorno, M., et al. (2009). A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137: 87-98. PubMed Citation: 19345189
Atfi, A., et al. (1997). Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein Kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J. Biol. Chem. 272(40): 24731-24734. PubMed Citation: 9312063
Baird, S. E. and Ellazar, S. A. (1999). TGFbeta-like signaling and spicule development in Caenorhabditis elegans. Dev. Biol. 212(1): 93-100. PubMed Citation: 10419688
Brummel, T., et al. (1999). The Drosophila activin receptor baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development. Genes Dev. 13(1): 98-111. PubMed Citation: 9887103
Candia, A. F., et al. (1997). Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124(22): 4467-4480. PubMed Citation: 9409665
Chen, D. and McKearin, D. (2003). Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr. Biol. 13: 1786-1791. 14561403
Chen, W., et al. (2007). Competition between Ski and CBP for binding to Smads in TGF-β signaling. J. Biol. Chem. 282(15): 11365-76. Medline abstract: 17283070
Chen, X., Rubock, M. J. and Whitman, M. (1996). A transcriptional partner for MAD proteins in TGF-ß signalling. Nature 383: 691-696. PubMed Citation: 8878477
Chen, X., et al. (1997). Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389: 85-89. PubMed Citation: 9288972
Chen, Y. G., et al. (1998). Determinants of specificity in TGF-beta signal transduction. Genes Dev. 12(14): 2144-2152. PubMed Citation: 9679059
da Graca, L. S., et al. (2004). DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGFß pathway to regulate C. elegans dauer development. Development 131: 435-446. 14681186
Das, P., et al. (1998). The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development 125: 1519-1528. PubMed Citation: 9502733
Das, P., et al. (1999). Drosophila dSmad2 and Atr-I transmit activin/TGFbeta signals. Genes to Cells 4: 123-134. PubMed Citation: 10320478
Datta, P. K., Blake, M. C. and Moses, H. L. (2000). Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta -induced physical and functional interactions between smads and Sp1. J. Biol. Chem. 275(51): 40014-9. 11054406
de Caestecker, M. P., et al. (1997). Characterization of functional domains within Smad4/DPC4. J. Biol. Chem. 272 (21): 13690-13696. PubMed Citation: 9153220
del Alamo Rodriguez, D., Terriente Felix, J., Diaz-Benjumea, F. J. (2004). The role of the T-box gene optomotor-blind in patterning the Drosophila wing. Dev. Biol. 268(2): 481-92. 15063183
Demagny, H., Araki, T. and De Robertis, E. M. (2014). The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-beta signaling. Cell Rep 9: 688-700. PubMed ID: 25373906
Dong, C., et al. (2000). Microtubule binding to Smads may regulate TGFbeta activity. Molec. Cell 5: 27-34. PubMed Citation: 10678166
Feng, X. H., et al. (1998). The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 12(14): 2153-2163. PubMed Citation: 9679060
Feng, X.-H., Lin, X. and Derynck, R. (2000). Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-beta. EMBO J. 19: 5178-5193. PubMed Citation: 11013220
Fischer, S., et al. (2012). fussel (fuss)--a negative regulator of BMP signaling in Drosophila melanogaster. PLoS One 7(8): e42349. PubMed Citation: 22879948
Furtado, M. B., et al. (2008). BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes Dev. 22(21): 3037-49. PubMed Citation: 18981480
Galant, R. and Carroll, S. B. (2002). Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415: 910-913. PubMed citation: 11859369
Gao, S., Steffen, J. and Laughon, A. (2005). DPP-responsive silencers are bound by a trimeric mad-medea complex. J. Biol. Chem. 280(43): 36158-64. 16109720
Gao, S. and Laughon, A. (2006). Decapentaplegic-responsive silencers contain overlapping mad-binding sites. J. Biol. Chem. 281(35): 25781-90. 16829514
Hahn, S. A., et al. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350-353
Hata, A., et al. (1997). Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388(6637): 82-87
Hata, A., et al. (1998). Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor Genes Dev. 12: 186-197
Henderson, K. D., Isaac, D. D. and Andrew, D. J. (1999). Cell fate specification in the Drosophila salivary gland: the integration of homeotic gene function with the DPP signaling cascade. Dev. Biol. 205(1): 10-21
Hodge, L. K., et al. (2007). Retrograde BMP signaling regulates trigeminal sensory neuron identities and the formation of precise face maps. Neuron 55(4): 572-86. PubMed citation: 17698011
Howe, J. R., et al. (1998). Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280(5366): 1086-1088
Howell, M., et al. (1999). Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes. Dev. Biol. 214(2): 354-69
Howell, M., Inman, G. J. and Hill, C. S. (2002). A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements. Development 129: 2823-2834. 12050132
Hua, X., et al. (1998). Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev. 12(19): 3084-95
Hudson, J. B., et al. (1998). The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4. Development 125: 1407-1420. 9502722
Hullinger, T. G., et al. (2001). TGFbeta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp. Cell Res. 262(1): 69-74. 11120606
Inman, G. J., Nicolas, F. J. and Hill, C. S. (2002). Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-ß receptor activity. Molec. Cell 10: 283-294. 12191474
Inoue, H., et al. (1998). Interplay of signal mediators of Decapentaplegic (Dpp): Molecular characterization of Mothers against dpp, Medea, and Daughters against dpp. Mol. Biol. Cell 9(8): 2145-2156
Ito, Y., et al. (2001). Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-ß-mediated epidermal homeostasis. Dev. Bio. 236: 181-194. 11456453
Janknecht, R., Wells, N. J. and Hunter, T. (1998). TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 12(14): 2114-2119
Ji, Y.-J., et al. (2004). RNT-1, the C. elegans homologue of mammalian RUNX transcription factors, regulates body size and male tail development. Dev. Biol. 274: 402-412. 15385167
Jiang, X., et al. (2008). Otefin, a nuclear membrane protein, determines the fate of germline stem cells in Drosophila via interaction with Smad complexes. Dev. Cell 14(4): 494-506. PubMed Citation: 18410727
Johnson, A. N., Bergman, C. M., Kreitman, M. and Newfeld, S. J. (2003). Embryonic enhancers in the dpp disk region regulate a second round of Dpp signaling from the dorsal ectoderm to the mesoderm that represses Zfh-1 expression in a subset of pericardial cells. Dev. Biol. 262: 137-151. 14512024
Kawabata, M., et al. (1998). Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J. 17(14): 4056-4065
Kim, R. H., et al. (2000). A novel Smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-ß signal transduction. Genes Dev. 14: 1605-1616.
Kirilly, D., Spana, E. P., Perrimon, N., Padgett, R. W. and Xie, T. (2005). BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary.Dev. Cell 9(5): 651-62. 16256740
Kopp, E., Medzhitov, R., Carothers, J., Xiao, C., Douglas, I., Janeway, C.A., and Ghosh, S. 1999. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes & Dev. 13: 2059-2071. 10465784
Kretzschmar, M., et al. (1997). The TGF-ß family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11: 984-995
Kurisaki, K., et al. (2003). Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation. Mol. Cell. Biol. 23(13): 4494-510. 12808092
Labbe, E., et al. (1998). Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell (1): 109-20
Lagna, G., et al. (1996). Partnership between DPC4 and SMAD proteins in TGF-ß signaling pathways. Nature 383: 832-836
Leiblich, A., Marsden, L., Gandy, C., Corrigan, L., Jenkins, R., Hamdy, F. and Wilson, C. (2012). Bone morphogenetic protein- and mating-dependent secretory cell growth and migration in the Drosophila accessory gland. Proc Natl Acad Sci U S A 109: 19292-19297. PubMed ID: 23129615
LeSueur, J. A. and Graff, J. M. (1999). Spemann organizer activity of Smad10. Development 126(1): 137-146
LeSueur, J. A., et al. (2002). Smad10 is required for formation of the frog nervous system. Dev. Cell 2: 771-783. 12062089
Li, W., et al. (2003). Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 130: 6143-6153. 14597578
Lien, C. L., et al. (2002). Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev. Biol. 244: 257-266. 11944935
Liberati, N. T., et al. (1999). Smads bind directly to the jun family of AP-1 transcription factors. Proc. Natl. Acad. Sci. 96(9): 4844-9
Liberatore, C. M., et al. (2002). Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev. Biol. 244: 243-256. 11944934
Liu, F., Pouponnot, C. and Massague, J. (1997). Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 11(23): 3157-3167
Luo, K., et al. (1999). The Ski oncoprotein interacts with the Smad proteins to repress TGF signaling. Genes Dev. 17: 2196-2206
Marquez, R. M., et al. (2001). Transgenic analysis of the Smad family of TGF-ß signal transducers in Drosophila melanogaster suggests new roles and new interactions between family members. Genetics 157: 1639-1648. 11290719
McCabe, B. D., et al. (2004). Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41(6): 891-905. 15046722
Miles, W. O., et al. (2008). Medea SUMOylation restricts the signaling range of the Dpp morphogen in the Drosophila embryo. Genes Dev. 22(18): 2578-90. PubMed Citation: 18794353
Minami, R., Wakabayashi, M., Sugimori, S., Taniguchi, K., Kokuryo, A., Imano, T., Adachi-Yamada, T., Watanabe, N. and Nakagoshi, H. (2012). The homeodomain protein defective proventriculus is essential for male accessory gland development to enhance fecundity in Drosophila. PLoS One 7: e32302. PubMed ID: 22427829
Morsut, L., et al. (2010). Negative control of Smad activity by ectodermin/Tif1gamma patterns the mammalian embryo. Development 137(15): 2571-8. PubMed Citation: 20573697
Morikawa, Y., et al. (2009). BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development 136(21): 3575-84. PubMed Citation: 19793887
Müller, B., et al. (2003). Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient. Cell 113: 221-233. 12705870
Muzzopappa, M. and Wappner, P. (2005). Multiple roles of the F-box protein Slimb in Drosophila egg chamber development. Development 132: 2561-2571. 15857915
Nakao, A, et al. (1997). TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16(17): 5353-5362
Nguyen, H. T. and Xu, X. (1998). Drosophila mef2 expression during mesoderm development is controlled by a complex array of cis-acting regulatory modules. Dev. Biol. 204(2): 550-66
Nishimura, R., et al. (1998). Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J. Biol. Chem. 273(4): 1872-9
Patterson, G. I., et al. (1997). The DAF-3 smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev. 11(20): 2679-2690
Pyrowolakis, G., et al. (2004). A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. Dev. Cell 7: 229-240. 15296719
Raftery, L. A., Twombly, V., Wharton, K., and Gelbart, W. M. (1995). Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139: 241-254.
Raftery, L.A. and Sutherland, D. J. (1999). TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev. Biol. 210(2): 251-68
Rawson, J. M., Lee, M., Kennedy, E. L. and Selleck, S. B. (2003). Drosophila neuromuscular synapse assembly and function require the TGF-beta type I receptor saxophone and the transcription factor Mad. J. Neurobiol. 55: 134-150. 12672013
Reddien, P. W., Bermange, A. L., Kicza, A. M. and Sánchez Alvarado, A. (2007). BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134(22): 4043-51. Medline abstract: 17942485
Savage, C., et al. (1996). Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc. Natl. Acad. Sci. 93: 790-794
Sekelsky, J. J., et al. (1995). Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139: 1347-1358
Shathasivam, P., Kollara, A., Ringuette, M. J., Virtanen, C., Wrana, J. L. and Brown, T. J. (2015). Human ortholog of Drosophila Melted impedes SMAD2 release from TGF-beta receptor I to inhibit TGF-beta signaling. Proc Natl Acad Sci U S A 112: E3000-3009. PubMed ID: 26039994
Shen, J. and Dahmann, C. (2005). The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. Dev. Biol. 279(1): 31-43. 15708556
Shi, Y., et al. (1997). A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388(6637): 87-93
Shioda, T., et al. (1998). Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc. Natl. Acad. Sci. 95(17): 9785-90
Sirard, C., et al., (1998). The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12(1): 107-119.
Smith, M., Bhaskar, V., Fernandez, J. and Courey, A. J. (2004). Drosophila Ulp1, a nuclear pore-associated SUMO protease, prevents accumulation of cytoplasmic SUMO conjugates. J. Biol. Chem. 279: 43805-43814. PubMed Citation: 15294908
Song, X., et al. (2004). Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131(6): 1353-64. 14973291
Sotillos, S. and de Celis, J. F. (2006). Regulation of decapentaplegic expression during Drosophila wing veins pupal development. Mech. Dev. 123(3): 241-51. 16423512
Souchelnytskyi, S., et al. (1997). Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J. Biol. Chem. 272: 28107-28115
Sun, K., Westholm, J. O., Tsurudome, K., Hagen, J. W., Lu, Y., Kohwi, M., Betel, D., Gao, F. B., Haghighi, A. P., Doe, C. Q. and Lai, E. C. (2012). Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genet 8: e1002515. Pubmed: 22347817
Sutherland, D. J., et al. (2003). Stepwise formation of a SMAD activity gradient during dorsal-ventral patterning of the Drosophila embryo. Development 130: 5705-5716. 14534137
Suzuki, A., et al. (1997). Smad5 induces ventral fates in Xenopus embryo. Dev. Biol. 184 (2): 402-405
Takaesu, N. T., et al. (2002). Combinatorial signaling by an unconventional Wg pathway and the Dpp pathway requires Nejire (CBP/p300) to regulate dpp expression in posterior tracheal branches. Dev. Biol. 247: 225-236. 12086463
Takaesu, N. T., Herbig, E., Zhitomersky, D., O'Connor, M. B. and Newfeld, S. J. (2005). DNA-binding domain mutations in SMAD genes yield dominant-negative proteins or a neomorphic protein that can activate WG target genes in Drosophila. Development 132(21): 4883-94. 16192307
Takaesu, N. T., et al. (2006). dSno facilitates baboon signaling in the Drosophila brain by switching the affinity of Medea away from Mad and toward dSmad2. Genetics 174(3): 1299-313. Medline abstract: 16951053
Takaku, K., et al. (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92(5): 645-656
Takeda, M., et al. (2004). Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. Mol. Biol. Cell 15(3): 963-72. Medline abstract: 14699069
Thatcher, J. D., Haun, C. and Okkema, P. G. (1999). The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx. Development 126(1): 97-107
Topper, J. N., et al. (1998). CREB binding protein is a required coactivator for smad-dependent, transforming growth factor beta transcriptional responses in endothelial cells. Proc. Natl. Acad. Sci. 95(16): 9506-9511
Tropepe, V., et al. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30: 65-78. 11343645
Van Bortle, K., Peterson, A. J., Takenaka, N., O'Connor, M. B. and Corces, V. G. (2015). CTCF-dependent co-localization of canonical Smad signaling factors at architectural protein binding sites in D. melanogaster. Cell Cycle 14(16):2677-87. PubMed ID: 26125535
Vindevoghel, L., et al. (1998). SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor beta. Proc. Natl. Acad. Sci. 95(25): 14769-74
Walsh, C. M. and Carroll, S. B. (2007). Collaboration between Smads and a Hox protein in target gene repression. Development 134(20): 3585-92. PubMed citation: 17855427
Wang, J. Mohler, W. A. and Savage-Dunn, C. (2005). C-terminal mutants of C. elegans Smads reveal tissue-specific requirements for protein activation by TGF-ß signaling. Development 132: 3505-3513. 16000380
Watanabe, M., Masuyama, N., Fukuda, M. and Nishida, E. (2000). Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 1: 176-182. PubMed Citation: 11265759
Wharton, S. J., Basu, S. P. and Ashe, H. L. (2004). Smad affinity can direct distinct readouts of the embryonic extracellular Dpp gradient in Drosophila. Curr. Biol. 14: 1550-1558. 15341741
Watanabe, M. and Whitman, M. (1999). FAST-1 is a key maternal effector of mesoderm inducers in the early Xenopus embryo. Development 126: 5621-5634
Weiss, A., et al. (2010) A conserved activation element in BMP signaling during Drosophila development. Nat. Struct. Mol. Biol. 17(1): 69-76. PubMed Citation: 20010841
Wisotzkey, R. G., et al. (1998). Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. Development 125: 1433-1445. 9502724
Wong, C., et al. (1999). Smad3-smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol. Cell. Biol. 19(3): 1821-30
Wu, J., et al. (2002). Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGFβ signaling. Cell 111: 357-367. Medline abstract: 12419246
Wu, K.. et al. (2003). DACH1 inhibits TGF-beta signaling through binding Smad4. J. Biol. Chem. 278: 51673-51684. 14525983
Wu, R.-Y., et al. (1997). Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol. 17: 2521-28
Xiao, C., et al. (2003). Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis. Genes Dev. 17: 2933-2949. 14633973
Xu, X., et al. (1998). Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes Dev. 12(15): 2354-2370
Xu, X., et al. (2008). Ectodermal Smad4 and p38 MAPK are functionally redundant in mediating TGF-beta/BMP signaling during tooth and palate development. PubMed Citation: 18694570
Yang, X., et al. (1998). The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc. Natl. Acad. Sci. 95(7): 3667-3672
Yingling, J. M., et al. (1997). Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Mol. Cell. Biol. 17(12): 7019-7028
Yoshida, S., Soustelle, L., Giangrande, A., Umetsu, D., Murakami, S., Yasugi, T., Awasaki, T., Ito, K., Sato, M. and Tabata, T. (2005). DPP signaling controls development of the lamina glia required for retinal axon targeting in the visual system of Drosophila. Development 132: 4587-4598. Pubmed: 16176948
Zhang, Y., (1996). Receptor-associated MAD homologues synergize as effectors of the TGF-ß response. Nature 383: 168-172
Zhang, Y., Feng, X. H. and Derynck, R. (1998). Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394: 909-913
date revised: 15 July 2015
Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.