rolled/MAPK
Abrieu, A., Doree, M. and Picard, A. (1997a). Mitogen-activated protein kinase activation down-regulates a mechanism that inactivates cyclin B-cdc2 kinase in G2-arrested oocytes. Mol. Biol. Cell 8(2): 249-261. PubMed Citation: 9190205
Abrieu, A., et al. (1997b). MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle. EMBO J. 16(21): 6407-6413. PubMed Citation: 9351823
Acharya, U., et al. (1998). Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 92(2): 183-192. PubMed Citation: 9458043
Adachi, M., Fukuda, M. and Nishida, E. (2000). Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J. 18: 5347-5358. PubMed Citation: 10508167
Agarwal, S., Corbley, M. J., and Roberts, T. M. (1995). Reconstitution of signal transduction from the membrane to the nucleus in a baculovirus expression system: activation of Raf-1 leads to hypermodification of c-jun and c-fos via multiple pathways. Oncogene 11: 427-438. PubMed Citation: 7543194
Akiyama, R., Masuda, M., Tsuge, S., Bessho, Y. and Matsui, T. (2014). An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 141: 1104-1109. PubMed ID: 24504340
Akten, B., Tangredi, M. M., Jauch, E., Roberts, M. A., Ng, F., Raabe, T. and Jackson, F. R. (2009). Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator. J Neurosci 29: 466-475. PubMed ID: 19144847
Akashi, M. and Nishida, E. (2000). Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev. 14: 645-649. PubMed Citation: 10733524
Alberola-Ila, J., et al. (1995). Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373: 620-3. PubMed Citation: 7854419
Aplin, A. E. and Juliano, R. L. (1999). Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J. Cell Sci. 112 ( Pt 5): 695-706. PubMed Citation: 9973604
Asai, T., et al. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875): 977-83. 11875555
Ashton-Beaucage, D., Udell, C. M., Lavoie, H., Baril, C., Lefrancois, M., Chagnon, P., Gendron, P., Caron-Lizotte, O., Bonneil, E., Thibault, P. and Therrien, M. (2010). The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143: 251-262. PubMed ID: 20946983
Ashton-Beaucage, D., Lemieux, C., Udell, C. M., Sahmi, M., Rochette, S. and Therrien, M. (2016). The deubiquitinase USP47 stabilizes MAPK by counteracting the function of the N-end rule ligase POE/UBR4 in Drosophila. PLoS Biol 14: e1002539. PubMed ID: 27552662
Astigarraga, S., et al. (2007). A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J. 26(3): 668-77. Medline abstract: 17255944
Atkins, C. M., et al. (1998). The MAPK cascade is required for mammalian associative learning. Nature Neurosci. 1(7): 602-609. PubMed Citation: 10196568
Aubin, J., Davy, A. and Soriano, P. (2004). In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev. 18: 1482-1494. 15198985
Auer, J. S., Nagel, A. C., Schulz, A., Wahl, V. and Preiss, A. (2014). MAPK-dependent phosphorylation modulates the activity of Suppressor of Hairless in Drosophila. Cell Signal 27: 115-124. PubMed ID: 25452105
Auer, J. S., Nagel, A. C., Schulz, A., Wahl, V. and Preiss, A. (2015). Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila. Data Brief 5: 852-863. PubMed ID: 26702412
Bailey, C. H., et al. (1997). Mutation in the phosphorylation sites of MAP kinase blocks learning-related internalization of apCAM in Aplysia sensory neurons. Neuron 18(6): 913-924. PubMed Citation: 9208859
Baker, D. A., Mille-Baker, B., Wainwright, S. M., Ish-Horowicz, D. and Dibb, N. J. (2001). Mae mediates MAP kinase phosphorylation of Ets transcription factors in Drosophila. Nature 411: 330-334. FBgn0034373
Bao, M. Z., et al. (2004). Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell 119: 991-1000. 15620357
Bardwell, L., et al. (1998). Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev. 12(8): 2887-2898. PubMed Citation: 9744865
Battu, G., Hoier, E. F. and Hajnal, A. (2003). The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development. Development 130: 2567-2577. 12736202
Baud, V., et al. (1999). Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13(10): 1297-308. PubMed Citation: 10346818
Bellier, S., et al. (1997). Phosphorylation of the RNA Polymerase II largest subunit during Xenopus laevis oocyte maturation. Mol. Cell. Biol. 17: 1434-40. PubMed Citation: 9032270
Bendinelli, P., et al. (1995). The liver response to in vivo heat shock involves the activation of MAP kinases and RAF and the tyrosine phosphorylation of Shc proteins. Biochem. Biophys. Res. Commun. 216: 54-61. PubMed Citation: 7488124
Berghella, L. and Dimitri, P. (1996). The heterochromatic rolled gene of Drosophila melanogaster is extensively polytenized and transcriptionally active in the salivary gland chromocenter. Genetics 144: 117-125. PubMed Citation: 8878678
Bergmann, A., et al. (1998). The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95(3): 331-41. PubMed Citation: 9814704
Berman, D. E., et al. (1998). Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J. Neurosci. 18(23): 10037-10044. PubMed Citation: 9822758
Bettegowda, C., et al. (2011). Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333: 1453-1455. PubMed Citation: 21817013
Biggs, W. H. and Zipursky, S. L. (1992). Primary structure, expression and signal-dependent tyrosine phosphorylation of a Drosophila homolog of extracellular signal-regulated kinase. Proc. Natl. Acad. Sci. 89: 6295-99. PubMed Citation: 1378625
Biggs, W. H., et al. (1994). The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J. 13: 1628-35. PubMed Citation: 8157002
Bitangcol, J. C., et al. (1998). Activation of the p42 mitogen-activated protein kinase pathway inhibits Cdc2 activation and entry into M-phase incycling Xenopus egg extracts. Mol. Biol. Cell 9(2): 451-467. PubMed Citation: 9450967
Black, E. J., Clark, W. and Gillespie, D. A. F. (2000). Transient deactivation of ERK signalling is sufficient for stable entry into G0 in primary avian fibroblasts. Curr. Biol. 10: 1119-1122. 10996792
Bohmann, D., et al. (1994). Drosophila Jun mediates Ras-dependent photoreceptor determination. Cell 78: 973-986. PubMed Citation: 7923366
Bonni, A., et al. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286: 1358-1362. PubMed Citation: 10558990
Brodu, V., Elstob, P. R. and Gould, A. P. (2004). EGF receptor signaling regulates pulses of cell delamination from the Drosophila ectoderm. Dev. Cell 7: 885-895. 15572130
Brondello, J. M., Pouyssegur, J. and McKenzie, F. R. (1999). Reduced MAP linase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286: 2514-2517
Brunner, D., et al. (1994a). A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 76: 875-88
Brunner, D., et al. (1994b). The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370: 386-389
Buehrer, B. M. and Errede, B. (1997). Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol. Cell. Biol. 17(11): 6517-6525
Bumeister, R., Rosse, C., Anselmo, A., Camonis, J. and White, M. A. (2004). CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Curr. Biol. 14: 439-445. 15028221
Burdon, T., et al. (1999). Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210(1): 30-43
Busca, R., et al. (2000). Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19: 2900-2910.
Butch, E. R. and Guan, K. L. (1996). Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2. J. Biol. Chem. 271: 4230-4235
Cabernard, C. and Affolter, M. (2005). Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila. Dev. Cell 9(6): 831-42. 16326394
Cacace, A. M., et al. (1999). Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol. Cell. Biol. 19(1): 229-40
Campbell, J. S., et al. (1995). Differential activation of mitogen-activated protein kinase in response to basic fibroblast growth factor in skeletal muscle cells. Proc. Natl. Acad. Sci. 92: 870-874
Campos, L. S., et al. (2004). ß1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131: 3433-3444. 15226259
Canagarajah, B. J., et al. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90(5): 859-869
Carragher, N. O., et al. (2003). A novel role for FAK as a protease-targeting adaptor protein: Regulation by p42 ERK and Src. Curr. Biol. 13: 1442-1450. 12932330
Caunt, C. J., et al. (2005). Arrestin-mediated ERK activation by gonadotropin-releasing hormone receptors (GnRHRs): Receptor-specific activation mechanisms and compartmentalization. J. Biol. Chem. [Epub ahead of print]. 16314413
Carmena, A., et al. (1998). Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev. 12(24): 3910-3922
Carroll, D. J., et al. (2000). The relationship between calcium, MAP kinase, and DNA synthesis in the sea urchin egg at fertilization. Dev. Bio. 217: 179-91
Chambon, J. P., Nakayama, A., Takamura, K., McDougall, A. and Satoh, N. (2007). ERK- and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissues of ascidian tadpoles. Development 134(6): 1203-19. Medline abstract: 17332536
Chau, A. S. and Shibuya, E. K. (1999). Inactivation of p42 mitogen-activated protein kinase is required for exit from M-phase after cyclin destruction. J. Biol. Chem. 274(45): 32085-90.
Caviglia, S. and Luschnig, S. (2013). The ETS domain transcriptional repressor Anterior open inhibits MAP kinase and Wingless signaling to couple tracheal cell fate with branch identity. Development 140: 1240-1249. PubMed ID: 23444354
Chen, F., Torres, M. and Duncan, R. F. (1995). Activation of mitogen-activated protein kinase by heat shock treatment in Drosophila. Biochem. J. 312: 341-349
Cheng, M., et al. (1998). Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc. Natl. Acad. Sci. 95: 1091-1096
Cherkasova, V. A., et al. (2003). A novel functional link between MAP Kinase cascades and the Ras/cAMP pathway that regulates survival. Curr. Biol. 13: 1220-1226. 12867033
Cheung, P., et al. (2000). Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5(6): 905-15.
Cherniack, A. D., Klarlund, J. K. and Czech, M. P. (1994). Phosphorylation of the Ras nucleotide exchange factor son of sevenless by mitogen-activated protein kinase. J. Biol. Chem. 269: 4717-20
Chi, P., Greengard, P. and Ryan, T. A. (2003). Synaptic vesicle mobilization is regulated by distinct Synapsin I phosphorylation pathways at different frequencies. Neuron 38: 69-78. 12691665
Chiri, S., Nadai, C. D. and Ciapa, B. (1998). Evidence for MAP kinase activation during mitotic division. J. Cell Sci. 111( Pt 17): 2519-2527
Chou, S., Huang, L. and Liu, H. (2004). Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell 119: 981-990. 15620356
Chu, Y., et al. (1996). The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J. Biol. Chem. 271: 6497-6591
Chung, J., et al. (1997). STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol. Cell. Biol. 17(11): 6508-6516
Ciapponi, L., et al. (2001). Drosophila Fos mediates ERK and JNK signals via distinct phosphorylation sites. Genes Dev. 15: 1540-1553. 11410534
Claperon, A. and Therrien, M. (2007). KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26: 3143-3158. PubMed ID: 17496912
Clarke, N., et al. (1998). Epidermal growth factor induction of the c-jun promoter by a Rac pathway. Mol. Cell. Biol. 18(2): 1065-1073
Cook, J. G., Bardwell, L. and Thorner, J. (1997). Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 389(6655): 85-88
Cook, S. J., Aziz, N. and McMahon, M. (1999). The repertoire of Fos and Jun proteins expressed during the G1 phase of the cell cycle is determined by the duration of mitogen-activated protein kinase activation. Mol. Cell. Biol. 19(1): 330-41
Coppey, M., et al. (2008). Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr. Biol. 18(12): 915-9. PubMed Citation: 18571412
Cornelius, G. and Engel, M. (1995). Stress causes induction of MAP kinase-specific phosphatase and rapid repression of MAP kinase activity in Drosophila. Cell Signal 7: 611-615
Corson, L. B., et al. (2003). Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130: 4527-4537. 12925581
Cullen, P. J., et al. (2004). A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev. 18: 1695-1708. 15256499
Curran, K. L. and Grainger, R. M. (2000). Expression of activated MAP kinase in Xenopus laevis embryos: Evaluating the roles of FGF and other signaling pathways in early induction and patterning. Dev. Bio. 228: 41-56.
Damen, W. G. (2007). Evolutionary conservation and divergence of the segmentation process in arthropods. Dev. Dyn. 236: 1379-1391. PubMed Citation: 17440988
Daniel, A., Dumstrei, K., Lengyel, J. A. and Hartenstein, V. (1999). The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 126: 2945-2954
Davis, T. B., Yang, M., Schell, M. J., Wang, H., Ma, L., Pledger, W. J. and Yeatman, T. J. (2018). PTPRS Regulates Colorectal Cancer RAS Pathway Activity by Inactivating Erk and Preventing Its Nuclear Translocation. Sci Rep 8(1): 9296. PubMed ID: 29915291
Deak, M., et al. (1998). Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17: 4426-4441
Della Rocca, G. J., et al. (1999). Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis. J. Biol. Chem. 274(8): 4749-53
Demagny, H., Araki, T. and De Robertis, E. M. (2014). The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-beta signaling. Cell Rep 9: 688-700. PubMed ID: 25373906
De Nadal, E., et al. (2004). The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427(6972): 370-4. 14737171
Denouel-Galy, A., et al. (1998). Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr. Biol. 8(1): 46-55
Di Agostino, S., et al. (2002). The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development 129: 1715-1727. 11923207
Diaz-Benjumea, F. J. and Hafen, E. (1994). The sevenless signalling cassette mediates Drosophila EGF receptor function during epidermal development. Development 120: 569-78
Diaz-Meco, M. T. and Moscat J. (2001). MEK5, a new target of the atypical protein kinase C isoforms in mitogenic signaling. Mol. Cell Biol. 21(4): 1218-27. 11158308
Dickson, B., et al. (1992). Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360: 600-3
Duckworth, B. C. and Cantley, L. C. (1997). Conditional inhibition of the mitogen-activated protein kinase cascade by wortmannin: dependence on signal strength. J. Biol. Chem. 272: 27665-27670
Eberl, D. F., Duyf, B. J. and Hilliker, A. J. (1993). The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster. Genetics 134: 277-92
Ebisuya, M., Kondoh, K. and Nishida, E. (2005). The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J. Cell Sci. 118: 2997-3002. 16014377
Eblaghie, M. C., et al. (2003). Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Curr. Biol. 13: 1009-1018. 12814546
Eivers E., et al. (2009). Mad is required for wingless signaling in wing development and segment patterning in Drosophila. PLoS ONE 4: e6543. PubMed Citation: 19657393
Engel, K., et al. (1995). MAPKAP kinase 2 is activated by heat shock and TNF-alpha: in vivo phosphorylation of small heat shock protein results from stimulation of the MAP kinase cascade. J. Cell. Biochem. 57: 321-330. PubMed Citation: 7759569
English, J. D. and Sweatt, J. D. (1997). A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272: 19103-19106. 9235897
Evans, C. J., Olson, J. M., Ngo, K. T., Kim, E., Lee, N. E., Kuoy, E., Patananan, A. N., Sitz, D., Tran, P., Do, M. T., Yackle, K., Cespedes, A., Hartenstein, V., Call, G. B. and Banerjee, U. (2009). G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6: 603-605. PubMed ID: 19633663
Fabbro, M., et al. (2005). Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev. Cell 9: 477-488. 16198290
Fairchild, M.J., Yang, L., Goodwin, K. and Tanentzapf, G. (2016). Occluding junctions maintain stem cell niche homeostasis in the fly testes. Curr Biol [Epub ahead of print]. PubMed ID: 27546574
Fan, H. and Derynck, R. (1999). Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO J. 18: 6962-6972.
Fang, M., et al. (2000). Dexras1: A G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28: 183-193.
Fanger, G. R., Johnson, N. L. and Johnson, G. L. (1997). MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J. 16(16): 4961-4972
Fincham, V. J., et al. (2000). Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. EMBO J. 19: 2911-2923.
Fischer, M., Raabe, T., Heisenberg, M. and Sendtner, M. (2009). Drosophila RSK negatively regulates bouton number at the neuromuscular junction. Dev Neurobiol 69: 212-220. PubMed ID: 19160443
Fisher, C. E., et al. (2001). Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128: 4329-4338. 11684667
Fisher, D. L., et al. (1999). Dissociation of MAP kinase activation and MPF activation in hormone-stimulated maturation of Xenopus oocytes. Development 126: 4537-4546
Foltenyi, K., Greenspan, R. J. and Newport, J. W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neurosci. 10: 1160-1167. Medline abstract: 17694052
Font de Mora, J., et al. (1997). Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. Mol. Cell. Biol. 17(10): 6068-6075.
Forcet, C., et al. (2002). Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation. Nature 417: 443-447. 11986622
Formstecher, E., et al. (2001). PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell 1: 239-250. 11702783
Franklin, C., Srikanth, S. and Kraft, A. S. (1998). Conditional expression of mitogen-activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV-induced apoptosis. Proc. Natl. Acad. Sci. 95(6): 3014-3019
Freeman, A., et al. (2010). A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Res. 1326: 15-29. PubMed Citation: 20193670
Freeman, M. (1996). Reiterative use of the EGF Receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651-660
Frost, J. A., et al. (1996). Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol Cell Biol 16 (7): 3707-3713
Frost, J. A., et al. (1997). Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16(21): 6426-6438
Fukuda, M., Gotoh, Y. and Nishida, E. (1997). Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16: 1901-08
Fukunaga, R. and Hunter, T. (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16(8): 1921-33
Gabay, L., et al. (1996). EGF receptor signaling induces pointed P1 and inactivates Yan protein in the Drosophila embryonic ventral ectoderm. Development 122: 3355-3362
Gabay, L., Seger, R. and Shilo, B. Z. (1997). MAP kinase in situ activation atlas during Drosophila embryogenesis. Development 124: 3535-3541
Galy, A., et al. (2002). Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina. Dev. Bio. 248: 251-264. 12167402
Garcia, J., et al. (2002). IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation. EMBO J. 21: 5151-5163. 12356731
Gavin, A. C. and Nebreda A. R. (1999). A MAP kinase docking site is required for phosphorylation and activation of p90(rsk)/MAPKAP kinase-1. Curr. Biol. 9(5): 281-4. PubMed Citation: 10074458
Geiger, J. A., Carvalho, L., Campos, I., Santos, A. C. and Jacinto, A. (2011). Hole-in-one mutant phenotypes link EGFR/ERK signaling to epithelial tissue repair in Drosophila. PLoS One 6: e28349. Pubmed: 22140578
Ghiglione, C., Perrimon, N. and Perkins, L. A. (1999). Quantitative variations in the level of MAPK activity control patterning of the embryonic termini in Drosophila. Dev. Biol. 205(1): 181-93. PubMed Citation: 9882506
Giachello, C. N., Fiumara, F., Giacomini, C., Corradi, A., Milanese, C., Ghirardi, M., Benfenati, F. and Montarolo, P. G. (2010). MAPK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity. J Cell Sci 123: 881-893. PubMed ID: 20159961
Giovannini, M. G., et al. (2001). Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/Calmodulin-dependent protein kinase II in long-term potentiation. J. Neurosci. 21(18): 7053-7062. 11549715
Giroux, S., et al. (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9(7): 369-72
Godenschwege, T. A., et al. (2004). Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur. J. Neurosci. 20: 611-622. PubMed Citation: 15255973
Gomez, A. R., Lopez-Varea, A., Molnar, C., de la Calle-Mustienes, E., Ruiz-Gomez, M., Gomez-Skarmeta, J. L. and de Celis, J. F. (2005). Conserved cross-interactions in Drosophila and Xenopus between Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 232: 695-708. PubMed ID: 15704110
Gomez, N. and Cohen, P. (1991). Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 353: 170-3
Goswami, M., Uzgare, A. R. and Sater, A. K. (2001). Regulation of MAP kinase by the BMP-4/TAK1 pathway in Xenopus ectoderm. Dev. Bio. 236: 259-270. 11476570
Gould, M. C. and Stephano, J. L. (1999). MAP kinase, meiosis, and sperm centrosome suppression in Urechis caupo. Dev. Biol. 216(1): 348-58. PubMed Citation: 10588884
Grassian, A. R.,et al. (2011). Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev. 25(16): 1716-33. PubMed Citation: 21852536
Grigorian, M., Mandal, L., Hakimi, M., Ortiz, I. and Hartenstein, V. (2011). The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm. Dev Biol. 353(1): 105-18. PubMed Citation: 21382367
Gromley, A., et al. (2003). A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase, J. Cell Biol. 161: 535-545. 12732615
Gross, S. D., et al. (2000). The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk. Curr. Biol. 10: 430-438
Grumont, R. J. (1996). Activation of the mitogen-activated protein kinase pathway induces transcription of the PAC-1 phosphatase gene. Mol. Cell. Biol. 16: 2913-2921
Gryzik, T. and Muller, H. A. (2004). FGF8-like1 and FGF8-like2 encode putative ligands of the FGF receptor Htl and are required for mesoderm migration in the Drosophila gastrula. Curr. Biol. 14(8): 659-67. 15084280
Gu, J., Tamura, M. and Yamada, K. M. (1998). Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J. Cell Biol. 143(5): 1375-83
Gupta, S., Varshney, B., Chatterjee, S. and Ray, K. (2018). Somatic ERK activation during transit amplification is essential for maintaining the synchrony of germline divisions in Drosophila testis. Open Biol 8(7). PubMed ID: 30045884
The Interactive Fly resides on the
Society for Developmental Biology's Web server.