engrailed


REFERENCES (part 1/2)

Abzhanov, A. and Kaufman, T. C. (2000). Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev. Genes Evol. 210: 493-506. PubMed Citation: 11180798

Alberi, L., Sgado, P. and Simon, H. H. (2004). Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131: 3229-3236. 15175251

Aldea, D., Atsuta, Y., Kokalari, B., Schaffner, S. F., Prasasya, R. D., Aharoni, A., Dingwall, H. L., Warder, B. and Kamberov, Y. G. (2021). Repeated mutation of a developmental enhancer contributed to human thermoregulatory evolution. Proc Natl Acad Sci U S A 118(16). PubMed ID: 33850016

Alexandre, C. and Vincent, J. P. (2003). Requirements for transcriptional repression and activation by Engrailed in Drosophila embryos. Development 130: 729-739. 12506003

Altabef, M., et al. (2000). Engrailed-1 misexpression in chick embryos prevents apical ridge formation but preserves segregation of dorsal and ventral ectodermal compartments. Dev. Biol. 222: 307-316. PubMed Citation: 10837120

Alves, G., et al. (1998). Modulation of Hedgehog target gene expression by the Fused serine--threonine kinase in wing imaginal discs. Mech. Dev. 78(1-2): 17-31. PubMed Citation: 9858670

Americo, J. Whiteley, M., Brown, J. L., Fujiokac, M., Jaynes, J. B. and Kassis, J. A. (2002). A complex array of DNA-binding proteins required for pairing-sensitive silencing by a polycomb group response element from the Drosophila engrailed gene. Genetics 160: 1561-1571. 11973310

Araki, I. and Nakamura, H. (1999). Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate. Development 126: 5127-5135. PubMed Citation: 10529429

Aronson, B. D., et al. (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell. Biol. 17(9): 5581-5587. PubMed Citation: 9271433

Baader, S. L., et al. (1998). Ectopic overexpression of Engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions. J. Neurosci. 18(5): 1763-1773. PubMed Citation: 9465001

Badenhorst, P., Voas, M., Rebay, I. and Wu, C. (2002). Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 16: 3186-3198. 12502740

Baonza, A., Roch, F. and Martin-Blanco, E. (2000). DER signaling restricts the boundaries of the wing field during Drosophila development. Proc. Natl. Acad. Sci. 97: 7331-7335. PubMed Citation: 10860999

Barak, O., et al. (2003). Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J. 22: 6089-6100. 14609955

Barnett, M. W., et al. (2001). Xenopus Enhancer of Zeste (XEZ); an anteriorly restricted polycomb gene with a role in neural patterning. Mech. Dev. 102: 157-167. 11287189

Barresi, M. J. F., Hutson, L. D., Chien, C.-B. and Karlstrom, R. O. (2005). Hedgehog regulated slit expression determines commissure and glial cell position in the zebrafish forebrain. Development 132: 3643-3656. PubMed Citation: 16033800

Baumgartner, S., Martin, D., Hagios, C. and Chiquet-Ehrismann, R. (1994). ten[m], a Drosophila gene related to tenascin, is a new pair-rule gene. EMBO J. 13: 3728-3740. PubMed Citation: 8070401

Beaster-Jones, L., Schubert, M. and Holland, L. Z. (2007). Cis-regulation of the amphioxus engrailed gene: insights into evolution of a muscle-specific enhancer. Mech. Dev. 124(7-8): 532-42. PubMed citation: 17624741

Benedyk, M. J., Mullen, J. R. and DiNardo, S. (1994). odd-paired: a zinc finger pair-rule protein required for the timely activation of engrailed and wingless in Drosophila embryos. Genes Dev 8: 105-17. PubMed Citation: 8288124

Bernhardt, R. R., et al. (1998). Anterior-posterior subdivision of the somite in embryonic zebrafish: implications for motor axon guidance. Dev. Dyn. 213(3): 334-47. PubMed Citation: 9825868

Bhat, K. M. and Schedl, P. (1997). Requirement for engrailed and invected genes reveals novel regulatory interactions between engrailed/invected, patched, gooseberry and wingless during Drosophila neurogenesis. Development 124: 1689-1698. PubMed Citation: 9165117

Biggin, M. D. and McGinnis, W. (1997). Regulation of segmentation and segmental identity by Drosophila homeoproteins: the role of DNA binding in functional activity and specificity. Development 124(22): 4425-4433. PubMed Citation: 9409661

Binari, R. and Perrimon, N. (1994). Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev 8: 300-12. PubMed Citation: 8314084

Blair, S. S., Ralston A (1997). Smoothened-mediated Hedgehog signalling is required for the maintenance of the anterior-posterior lineage restriction in the developing wing of Drosophila. Development 124(20): 4053-4063. PubMed Citation: 9374402

Boyl, P. P., et al. (2001): Forebrain and midbrain development requires epiblast-restricted Otx2 translational control mediated by its 3' UTR. Development 128: 2989-3000. PubMed Citation: 11532921

Bossing, T and Brand, A. H. (2006). Determination of cell fate along the anteroposterior axis of the Drosophila ventral midline. Development 133: 1001-1012. 16467357

Bourbon,H. M., Martin-Blanco E., Rosen D. and Kornberg ,T. B. (1995). Phosphorylation of the Drosophila engrailed protein at a site outside its homeodomain enhances DNA binding. J Biol Chem 270: 11130-11139. PubMed Citation: 7744743

Breen, T. R., Chinwalla, V. and Harte, P. J. (1995). Trithorax is required to maintain engrailed expression in a subset of engrailed-expressing cells. Mech Dev 52: 89-98. PubMed Citation: 7577678

Breiling, A., et al. (2001). General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412: 651-655. 11493924

Bridi, J. C., Ludlow, Z. N. and Hirth, F. (2019). Lineage-specific determination of ring neuron circuitry in the central complex of Drosophila. Biol Open 8(7). PubMed ID: 31285267

Brizuela, B. J. and Kennison, J. A. (1997). The Drosophila homeotic gene moira regulates expression of engrailed and HOM genes in imaginal tissues. Mech. Dev. 65(1-2): 209-220. PubMed Citation: 9256357

Brown, J. L., Mucci, D., Whiteley, M., Dirksen, M. L. and Kassis, J. A. (1998). The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol. Cell (7): 1057-1064. PubMed Citation: 9651589

Brown, J. L., Grau, D. J., DeVido, S. K. and Kassis, J. A. (2005). An Sp1/KLF binding site is important for the activity of a Polycomb group response element from the Drosophila engrailed gene. Nucleic Acids Res. 33(16): 5181-9. 16155187

Brown, J. L. and Kassis, J. A. (2010). Spps, a Drosophila Sp1/KLF family member, binds to PREs and is required for PRE activity late in development. Development 137: 2597-2602. PubMed Citation: 20627963

Brunetti, C. R., et al. (2001). The generation and diversification of butterfly eyespot color patterns. Cur. Bio. 11: 1578-1585. 11676917

Burke, T. W. and Kadonaga, J. T. (1996). Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 10: 711-724. PubMed Citation: 8598298

Cadigan, K. M., Grossniklaus, U. and Gehring, W. J., (1994). Localized expression of sloppy paired protein maintains the polarity of Drosophila parasegments. Genes Dev 8: 899-913. PubMed Citation: 7926775

Casares, F., et al. (1997). The genital disc of Drosophila melanogaster. I. Segmental and compartmental organization. Dev. Genes Evol. 207: 216-228

Cassata, G., et al. (2005). ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development 132: 739-749. 15659483

Castellanos, M., Mothi, N. and Munoz, V. (2020). Eukaryotic transcription factors can track and control their target genes using DNA antennas. Nat Commun 11(1): 540. PubMed ID: 31992709

Chen, E. H. and Baker. B. S. (1997). Compartmental organization of the Drosophila genital imaginal discs. Development 124: 205-218. PubMed Citation: 9006081

Chen, S. and Rasmuson-Lestander, A. (2009). Regulation of the Drosophila engrailed gene by Polycomb repressor complex 2. Mech Dev. 126(5-6): 443-8. PubMed Citation: 19368801

Cheng, Y., Sudarov, A., Szulc, K. U., Sgaier, S. K., Stephen, D., Turnbull, D. H. and Joyner, A. L. (2010). The Engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum. Development 137(3): 519-29. PubMed Citation: 20081196

Cheng, Y., et al. (2012). P-element homing is facilitated by engrailed polycomb-group response elements in Drosophila melanogaster. PLoS One 7(1): e30437. PubMed Citation: 22276200

Cheng, Y., Brunner, A. L., Kremer, S., DeVido, S. K., Stefaniuk, C. M. and Kassis, J. A. (2014). Co-regulation of invected and engrailed by a complex array of regulatory sequences in Drosophila. Dev Biol 395: 131-143. PubMed ID: 25172431

Collins, R. T., et al. (1999). Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J. 18: 7029-7040. PubMed Citation: 10601025

Colomb, S., Joly, W., Bonneaud, N. and Maschat, F. (2008). A concerted action of Engrailed and Gooseberry-Neuro in neuroblast 6-4 is triggering the formation of embryonic posterior commissure bundles. PLoS ONE 3(5): e2197. PubMed Citation: 18493305

Condron, B. G., Patel, N. H. and Zinn, K. (1994). Engrailed controls glial/neuronal cell fate decisions at the midline of the central nervous system. Neuron 13: 541-554. PubMed Citation: 7917290

Connolly, J. P., Augustine, J. G. and Francklyn, C. (1999). Mutational analysis of the Engrailed homeodomain recognition helix by phage display. Nucleic Acids Res 27(4): 1182-1189. PubMed Citation: 9927754

Copley, R. R. (2005). The EH1 motif in metazoan transcription factors. BMC Genomics 6: 169. 16309560

Crozatier, M., et al. (1999). Head versus trunk patterning in the Drosophila embryo; collier requirement for formation of the intercalary segment. Development 126: 4385-4394. PubMed Citation: 10477305

Cygan, J. A., Johnson, R. L. and McMahon, A. P. (1997). Novel regulatory interactions revealed by studies of murine limb pattern in Wnt-7a and En-1 mutants. Development 124(24): 5021-5032. PubMed Citation: 9362463

Dahmann, C. and Basler, K. (2000). Opposing transcriptional outputs of Hedgehog signaling and Engrailed control compartmental cell sorting at the Drosophila A/P boundary. Cell 100: 411-422. PubMed Citation: 10693758

Damen, W. G. M. (2002). Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129: 1239-1250. 11874919

De, S., Cheng, Y., Sun, M. A., Gehred, N. D. and Kassis, J. A. (2019). Structure and function of an ectopic Polycomb chromatin domain. Sci Adv 5(1): eaau9739. PubMed ID: 30662949

Deuring, R., et al. (2000). The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Molec. Cell 5: 355-365

Duman-Scheel, M. and Patel, N. H. (1999). Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126: 2327-2334

Danielian, P. S., McMahon, A. P. (1996). Engrailed-1 as a target of the WNT-1 signalling pathway in the vertebrate midbrain development. Nature 383: 332-334

de Celis, J. F. and Rulz-Gomez, M. (1995). groucho and hedgehog regulate engrailed expression in the anterior compartment of the Drosophila wing. Development 121: 3467-76

Degenhardt, K. and Sassoon, D. A. (2001). A role for Engrailed-2 in determination of skeletal muscle physiologic properties. Dev. Bio. 231: 175-189. 11180961

Degenhardt, K., et al. (2002). Cellular and cis-regulation of En-2 expression in the mandibular arch. Mech. Dev. 111: 125-136. 11804784

DeVido, S. K., Kwon, D., Brown, J. L. and Kassis, J. A. (2008). The role of Polycomb-group response elements in regulation of engrailed transcription in Drosophila. Development 135: 669-676. PubMed Citation: 18199580

DiNardo, S. and O'Farrell, P. H. (1987). Establishment and refinement of segmental pattern in the Drosophila embryo: spatial control of engrailed expression by pair-rule genes. Genes Dev. 1: 1212-25

Dittrich, R., et al. (1997). The differentiation of the serotonergic neurons in the Drosophila ventral nerve cord depends on the combined function of the zinc finger proteins Eagle and Huckebein. Development 124(13): 2515-2525

Dréan, B. S.-Le, et al. (1998). Dynamic changes in the functions of Odd-skipped during early Drosophila embryogenesis. Development 125: 4851-4861

Eldon, E., et al. (1994). The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development 120 (4): 885-899

Erickson, T., Scholpp, S., Brand, M., Moens, C. B. and Waskiewicz, A. J. (2007). Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries. Dev. Biol. 301(2): 504-17. Medline abstract: 16959235

Estella, C., et al. (2003). The role of buttonhead and Sp1 in the development of the ventral imaginal discs of Drosophila. Development 130: 5929-5941. 14561634

Fabre C. C. G., Casal J. and Lawrence P. A. (2008). The abdomen of Drosophila: does planar cell polarity orient the neurons of mechanosensory bristles? Neural Dev. 3: 12. PubMed Citation: 18668998

Fabre, C. C., Casal, J. and Lawrence, P. A. (2010). Mechanosensilla in the adult abdomen of Drosophila: engrailed and slit help to corral the peripheral sensory axons into segmental bundles. Development 137(17): 2885-94. PubMed Citation: 20667917

Fang, M., Ren, H., Liu, J., Cadigan, K. M., Patel, S. R. and Dressler, G. R. (2009). Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways. Development 136(11): 1929-38. PubMed Citation: 19429789

Fauvarque, M.O., Zuber, V and Dura, J. M. (1995). Regulation of polyhomeotic transcription may involve local changes in chromatin activity in Drosophila. Mech Dev 52: 343-355

Fjose, A., McGinnis, W.J. and Gehring, W.J. (1985). Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spacial distribution of its transcripts. Nature 313: 284-89

Florence, B., et al. (1997). Ftz-F1 is a cofactor in Ftz activation of the Drosophila engrailed gene. Development 124: 839-847

Foucher, I., et al. (2003). Joint regulation of the MAP1B promoter by HNF3ß/Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors. Development 130: 1867-1876. 12642491

Fraenkel, E., et al. (1998). Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. J. Mol. Biol. 284(2): 351-61

Fujioka, M., Jaynes, J. B. and Goto, T. (1995). Early even-skipped stripes act as morphogenetic gradients at the single cell level to establish engrailed expression. Development 121: 4371-4382

Fujioka, M., et al. (2002). The repressor activity of Even-skipped is highly conserved, and is sufficient to activate engrailed and to regulate both the spacing and stability of parasegment boundaries. Development 129: 4411-4421. 12223400

Fujioka M., Yusibova G. L., Zhou J. and Jaynes J. B. (2008). The DNA-binding Polycomb-group protein Pleiohomeotic maintains both active and repressed transcriptional states through a single site. Development 135: 4131-4139. PubMed Citation: 19029043

Fujioka, M., Wu, X. and Jaynes, J. B. (2009). A chromatin insulator mediates transgene homing and very long-range enhancer-promoter communication. Development 136: 3077-3087. PubMed Citation: 19675129

Fujioka, M., Gebelein, B., Cofer, Z. C., Mann, R. S. and Jaynes, J. B. (2012). Engrailed cooperates directly with Extradenticle and Homothorax on a distinct class of homeodomain binding sites to repress sloppy paired. Dev. Biol. 366(2): 382-92. PubMed Citation: 22537495

Fujise, M., et al. (2003). Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130: 1515-1522. 12620978

Funakoshi, Y., Minami, M. and Tabata, T. (2001). mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins. Development 128: 67-74. 11092812

Fuß, B., et al. (2001). Control of endoreduplication domains in the Drosophila gut by the knirps and knirps-related genes. Mech. Dev. 100: 15-23. 11118880

Fusse, B. and Hoch, M. (2002). Notch signaling controls cell fate specification along the dorsoventral axis of the Drosophila gut. Curr. Biol. 12: 171-179. 11839268

Galliot, B., et al. (2009). Origins of neurogenesis, a cnidarian view. Dev. Biol. 332: 2-24. PubMed Citation: 19465018

Gallitano-Mendel, A. and Finkelstein, R. (1997). Novel segment polarity gene interactions during embryonic head development in Drosophila. Dev. Biol. 192(2): 599-613. PubMed Citation: 9441692

Gallitano-Mendel, A. and Finkelstein, R. (1998). Ectopic orthodenticle expression alters segment polarity gene expression but not head segment identity in the Drosophila embryo. Dev. Biol. 199(1): 125-137. PubMed Citation: 9676197

Gebelein. B., McKay, D. J. and Mann, R. S. (2004). Direct integration of Hox and segmentation gene inputs during Drosophila development. Nature 431: 653-659. 16556799

Gemel, J., Jacobsen, C. and MacArthur, C. A. (1999). Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. J. Biol. Chem. 274(9): 6020-6. PubMed Citation: 10026229

Gibson, M. C. and Schubiger, G. (1999). Hedgehog is required for activation of engrailed during regeneration of fragmented Drosophila imaginal discs. Development 126: 1591-1599. PubMed Citation: 10079222

Glise, B., Jones, D. L. and Ingham, P. W. (2002). Notch and Wingless modulate the response of cells to Hedgehog signaling in the Drosophila wing. Dev. Bio. 248: 93-106 . 12142023

Goldsborough, A. S. and Kornberg, T. B. (1994). Allele-specific quantification of Drosophila engrailed and invected transcripts. Proc Natl Acad Sci 91: 12696-12700. PubMed Citation: 7809104

Gómez-Skarmeta, J.-L. and Modolell, J. (1996). araucan and caupolican provide a link between compartment subdivisions and patterning of sensory organs and veins in the Drosophila wing. Genes Dev. 10: 2935-45. PubMed Citation: 8918894

Gorivodsky, M. and Lonai, P. (2003). Novel roles of Fgfr2 in AER differentiation and positioning of the dorsoventral limb interface. Development 130: 5471-5479. 14507786

Grbic, M. and Strand, M. R. (1998). Shifts in the life history of parasitic wasps correlate with pronounced alterations in early development. Proc. Natl. Acad. Sci. 95(3): 1097-1101. PubMed Citation: 9448291

Gregory, S. L., et al. (1996). Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins. Mol. Cell. Biol. 16(3): 792-799. PubMed Citation: 8622680

Gritzan, U., Hatini, V. and DiNardo, S. (1999). Mutual antagonism between signals secreted by adjacent Wingless and Engrailed cells leads to specification of complementary regions of the Drosophila parasegment. Development 126: 4107-4115. PubMed Citation: 10457019

Guillen, I., et al. (1995). The function of engrailed and the specification of Drosophila wing pattern. Development 121: 3447-3456. PubMed Citation: 7588077

Häcker, U., et al. (1995). The Drosophila fork head domain protein crocodile is required for the establishment of head structures. EMBO J 14: 5306-5317. PubMed Citation: 7489720

Hamaguchi, T., et al. (2012). Dorsoventral patterning of the Drosophila hindgut is determined by interaction of genes under the control of two independent gene regulatory systems, the dorsal and terminal systems. Mech. Dev. 129(9-12): 236-43. PubMed Citation: 22898294

Han, K and Manley, J. L. (1993). Functional domains of the Drosophila Engrailed protein. EMBO J. 12: 2723-33. PubMed Citation: 8334991

Hanks, M. C., et al. (1998). Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development. Development 125(22): 4521-4530. PubMed Citation: 9778510

Harzsch, S. (2003). Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the american lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev. Biol. 258: 44-56. 12781681

Hidalgo, A. and Ingham, P. (1990). Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched. Development 110: 291-301

Hirth, F. (2010). On the origin and evolution of the tripartite brain. Brain Behav. Evol. 76(1): 3-10. PubMed Citation: 20926853

Ho, K. S., Suyama, K., Fish, M. and Scott, M. P. (2005), Differential regulation of Hedgehog target gene transcription by Costal2 and Suppressor of Fused. Development 132: 1401-1412. 15750186

Holland, L. Z., et al. (1997). Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124: 1723-1732

Hughes, C. L. and Kaufman, T. C. (2002). Exploring myriapod segmentation: The expression patterns of even-skipped, engrailed, and wingless in a Centipede. Dev. Bio. 247: 47-61. 12074551

Itasaki, N. and Nakamura, H. (1996). A role for gradient en expression in positional specification on the optic tectum. Neuron 16: 55-62

Iwaki, D. D. and Lengyel, J. A. (2002). A Delta-Notch signaling border regulated by Engrailed/Invected repression specifies boundary cells in the Drosophila hindgut. Mech. Dev. 114: 71-84. 12175491

Jia, X. X. and Siegler, M. V. S. (2002). Midline lineages in grasshopper produce neuronal siblings with asymmetric expression of Engrailed. Development 129: 5181-5193. 12399310

Jimenez, G., Paroush, Z. and Ish-Horowicz, D. (1997). Groucho acts as a corepressor for a subset of negative regulators, including hairy and engrailed. Genes Dev. 11(22): 3072-3082

Joliot, A., et al. (1997). Association of Engrailed homeoproteins with vesicles presenting caveolae-like properties. Development 124: 1865-1875

Joly, W., Mugat, B. and Maschat, F. (2007). Engrailed controls the organization of the ventral nerve cord through frazzled regulation. Dev. Biol. 301(2): 542-54. PubMed Citation: 17126316

Kassis, J. A., Van Sickle, E. P., and Sensabaugh, S. M. (1991). A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics 128: 751-761. PubMed Citation: 1655566

Kassis, J. A., Noll, E., VanSickle, E. P., Odenwald, W. F. and Perrimon, N. (1992). Altering the insertional specificity of a Drosophila transposable element. Proc. Natl. Acad. Sci. 89: 1919-1923. PubMed Citation: 1311855

Kassis, J. A. (1994). Unusual properties of regulatory DNA from the Drosophila engrailed gene: three "pairing-sensitive" sites within a 1.6 kb region. Genetics 136: 1025-1038. PubMed Citation: 8005412

Keys, D. N., et al. (1999). Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283(5401): 532-4. PubMed Citation: 9915699

Kim, S. N., Jung, K. I., Chung, H. M., Kim, S. H. and Jeon, S. H. (2008). The pleiohomeotic gene is required for maintaining expression of genes functioning in ventral appendage formation in Drosophila melanogaster. Dev. Biol. 319(1): 121-9. PubMed Citation: 18495104

Kobayashi, M., et al. (2003). Engrailed cooperates with extradenticle and homothorax to repress target genes in Drosophila. Development 130: 741-751. 12506004

Kopp, A., Muskavitch, M. A. and Duncan, I. (1997). The roles of hedgehog and engrailed in patterning adult abdominal segments of Drosophila. Development 124(19): 3703-3714. PubMed Citation: 9367426

Kopp, A., and Duncan, I. (2002). Anteroposterior patterning in adult abdominal segments of Drosophila. Dev. Bio. 242: 15-30. PubMed Citation: 11795937

Kornberg, T., et al. (1985). The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell 40: 45-53. PubMed Citation: 3917856

Kuemerle, B., et al. (1997). Pattern deformities and cell loss in engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J. Neurosci. 17(20): 7881-7889

Kuhn, D. T., et al. (1995). Analysis of the genes involved in organizing the tail segments of the Drosophila melanogaster embryo. Mech. Dev. 53: 3-13. PubMed Citation: 8555109

Kumar, A., Bello, B. and Reichert, H. (2009). Lineage-specific cell death in postembryonic brain development of Drosophila. Development 136(20): 3433-42. PubMed Citation: 19762424

Kwon, D., Mucci, D., Langlais, K. K., Americo, J. L., DeVido, S. K., Cheng, Y. and Kassis, J. A. (2009). Enhancer-promoter communication at the Drosophila engrailed locus. Development 136(18): 3067-75. PubMed Citation: 19675130

LaJeunesse, D. and Shearn, A. (1995). Trans-regulation of thoracic homeotic selector genes of the Antennapedia and bithorax complexes by the trithorax group genes: absent, small, and homeotic discs 1 and 2. Mech. Dev. 53: 123-39. PubMed Citation: 8555105

Landsberg, K. P., Farhadifar, R., Ranft, J., Umetsu, D., Widmann, T. J., Bittig, T., Said, A., Julicher, F. and Dahmann, C. (2009). Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr Biol 19: 1950-1955. PubMed ID: 19879142

Langlais, K. K., Brown, J. L. and Kassis, J. A. (2012). Polycomb group proteins bind an engrailed PRE in both the 'ON' and 'OFF' transcriptional states of engrailed. PLoS One 7: e48765. PubMed ID: 23139817

Larsen, C. W., Hirst, E., Alexandre, C. and Vincent, J.-P. (2003). Segment boundary formation in Drosophila embryos. Development 130: 5625-5635. 14522878

Laufer, E., et al. (1997). Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386: 366-373. PubMed Citation: 9121552

Lawrence, P., Sanson, B. and Vincent, J.-P. (1996). Compartments, wingless and engrailed: patterning and the ventral epidermis of Drosophila embryos. Development 122: 4095-4103. PubMed Citation: 9012529

Lawrence, P. A. and Pick, L. (1998). How does the fushi tarazu gene activate engrailed in the Drosophila embryo? Dev. Genet. 23(1): 28-34. PubMed Citation: 9706691

Lawrence, P. A., Casal, J. and Struhl, G. (1999a). hedgehog and engrailed: pattern formation and polarity in the Drosophila abdomen. Development 126: 2431-2439. PubMed Citation: 10226002

Lawrence, P. A., Casal, J. and Struhl, G. (1999b). The Hedgehog morphogen and gradients of cell affinity in the abdomen of Drosophila. Development 126: 2441-2449. PubMed Citation: 10226003

Layalle, S., et al. (2011). Engrailed homeoprotein acts as a signaling molecule in the developing fly. Development 138(11): 2315-23. PubMed Citation: 21558379

Lecourtois, M., et al. (2001). Wingless capture by Frizzled and Frizzled2 in Drosophila embryos. Dev. Bio. 235: 467-475. 11437451

Lee, M. G., Norman, J., Shilatifard, A. and Shiekhattar, R. (2007). Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 128(5): 877-87. PubMed citation: 17320162

Lee, S. M. K., et al. (1997). Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124: 959-969

Li H., et al. (2008). The role of transcription factors Sp1 and YY1 in proximal promoter region in initiation of transcription of the Mu opioid receptor gene in human lymphocytes. J. Cell. Biochem. 104: 237-237. PubMed Citation: 17990281

Li, L.-H. and Gergen, J. P. (1999). Differential interactions between Brother proteins and Runt domain proteins in the Drosophila embryo and eye. Development 126: 3313-3322

Li, W., Noll, E. and Perrimon. N. (2000). Identification of autosomal regions involved in Drosophila Raf function. Genetics 156: 763-774.

Lim, J. and Choe, C. P. (2019). Functional analysis of engrailed in Tribolium segmentation. Mech Dev: 103594. PubMed ID: 31778794

Liu, A. and Joyner, A. L. (2001). EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128: 181-191

Logan, C., et al. (1997). The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development 124 (12): 2317-2324

Loomis, C. A., et al. (1996). The mouse Engrailed-1 gene and ventral limb patterning. Nature 382: 360-363

Loomis, C., et al. (1998). Analysis of the genetic pathway leading to formation of ectopic apical ectodermal ridges in mouse Engrailed-1 mutant limbs. Development 125(6): 1137-1148

Louvi, A. and Wassef, M. (2000). Ectopic Engrailed 1 expression in the dorsal midline causes cell death, abnormal differentiation of circumventricular organs and errors in axonal pathfinding. Development 127: 4061-4071

Lowe, C. J. and Wray, G. A. (1997). Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389(6652): 718-721

Lowe, C. J., et al. (2003). Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113: 853-865. 12837244

Lun, K. and Brand, M. (1998). A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125(16): 3049-3062

Lundell, M. J., et al. (1996). The engrailed and huckebein genes are essential for development of serotonin neurons in the Drosophila CNS. Mol. Cell. Neurosci. 7: 46-61

Macias, A., Pelaz, S. and Morata, G., (1994). Genetic factors controlling the expression of the abdominal-A gene of Drosophila within its domain. Mech Dev 46: 15-25

Maizel, A., et al. (2002). Engrailed homeoprotein secretion is a regulated process. Development 129: 3545-3553. 12117805

Mann, R. S. (1994). Engrailed-mediated repression of Ultrabithorax is necessary for the parasegment 6 identity in Drosophila. Development 120: 3205-3212

Manoukian, A. S., and Krause, H. M. (1993). Control of segmental asymmetry in Drosophila embryos. Development 118: 785-796

Marie, B., Bacon, J. P. and Blagburn, J. M. (2000a). Double-stranded RNA interference shows that Engrailed controls the synaptic specificity of identified sensory neurons. Curr. Biol. 10: 289-292

Marie, B. and Bacon, J. P. (2000b). Two engrailed-related genes in the cockroach: cloning, phylogenetic analysis, expression and isolation of splice variants. Dev. Genes Evol. 210: 436-448

Marie, B., Cruz-Orengo, L. and Blagburn, J. M. (2002). Persistent engrailed expression is required to determine sensory axon trajectory, branching, and target choice. J. Neurosci. 22(3): 832-841. 11826113

Maschat, F., et al. (1998). engrailed and polyhomeotic interactions are required to maintain the A/P boundary of the Drosophila developing wing. Development 125: 2771-2780

Matsunaga, E., Araki, I. and Nakamura, H. (2000). Pax6 defines the di-mesencephalic boundary by repressing En1 and Pax2. Development 127: 2357-2365

Maurange, C. and Paro, R. (2002). A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development. Genes Dev. 20: 2672-2683. 12381666

McDonald, J. A. and Doe, C. Q. (1997). Establishing neuroblast-specific gene expression in the Drosophila CNS: huckebein is activated by Wingless and Hedgehog and repressed by Engrailed and Gooseberry. Development 124: 1079-1087

McGrew, L. L., Hoppler, S. and Moon, R. T. (1997). Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech. Dev. 69(1-2): 105-114

Merzdorf, C. S. and Sive, H. L. (2006). The zic1 gene is an activator of Wnt signaling. Int. J. Dev. Biol. 50(7): 611-7. Medline abstract: 16892174

Mihaly, J., Misra, R. K. and Karch, F. (1998). A conserved sequence motif in Polycomb-response elements. Mol. Cell 1: 1065-1066

Moline, M. M., Southern, S. and Bejsovec, A. (1999). Directionality of Wingless protein transport influences epidermal patterning in the Drosophila embryo. Development 126: 4375-4384

Moran-Rivard, L., et al. (2001). Evx1 is a postmitotic determinant of V0 interneuron identity in the spinal cord. Neuron 29: 385-399. 11239430

Mullen, J. R. and DiNardo, S. (1995). Establishing parasegments in Drosophila embryos: roles of odd-skipped and naked genes. Dev. Biol. 169: 295-308

Continued: engrailed References part 2/2

engrailed: Biological Overview | Evolutionary Homologs | Transcriptional regulation | Targets of activity | Protein Interactions | Developmental Biology | Effects of mutation

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.