brahma


REFERENCES

Agalioti, T., Chen, G. and Thanos, D. (2002). Deciphering the transcriptional histone acetylation code for a human gene. Cell 111: 381-392. 12419248

Ahmad, K. and Henikoff, S. (2001). Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell 104: 839-847. 11290322

Armstrong, J. A., Bieker, J. J. and Emerson, B. M. (1998). A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95(1): 93-104. PubMed Citation: 9778250

Armstrong, J. A., et al. (2002). The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21: 5245-5254. 12356740

Armstrong, J. A., et al. (2005). Genetic screens for enhancers of brahma reveal functional interactions between the BRM chromatin-remodeling complex and the delta-notch signal transduction pathway in Drosophila. Genetics 170(4): 1761-74. 15944353

Barbosa, V., et al. (2003). Drosophila dd4 mutants reveal that {gamma}TuRC is required to maintain juxtaposed half spindles in spermatocytes. J. Cell Sci. 116: 929-941. PubMed Citation: 12571290

Barker, N., et al. (2001). The chromatin remodeling factor Brg-1 interacts with ß-catenin to promote target gene activation. EMBO J. 20: 4935-4943. 11532957

Batschè, E., Yaniv, M. and Muchardt, C. (2006). The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13: 22-29. PubMed Citation: 16341228

Bazett-Jones, D. P., et al. (1999). The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol. Cell. Biol. 19(2): 1470-8. PubMed Citation: 9891080

Beisel, C., Imhof, A., Greene, J., Kremmer, E. and Sauer, F. (2002). Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419(6909): 857-62. 12397363

Biggar, S. R. and Crabtree, G. R. (1999). Continuous and widespread roles for the Swi-Snf complex in transcription. EMBO J. 18(8): 2254-2264. PubMed Citation: 10205178

Bourachot, B., Yaniv, M. and Muchardt, C. (1999). The activity of mammalian brm/SNF2alpha is dependent on a high-mobility-group protein I/Y-like DNA binding domain. Mol. Cell. Biol. 19: 3931-3939. PubMed Citation: 10330133

Brizuela, B. J., et al. (1994). Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics 137: 803-813. PubMed Citation: 7916308

Brownell, J. E., et al. (1996). Tetrahymena histone acetyltransferase A: a homolog of yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843-851. PubMed Citation: 8601308

Brumby, A. M., et al. (2002). Drosophila cyclin E interacts with components of the Brahma complex. EMBO J. 21: 3377-3389. 12093739

Cairns, B. R., et al. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell 87: 1249-60. PubMed Citation: 8980231

Cairns, B. R., et al. (1998). Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell 2(5): 639-51. PubMed Citation: 9844636

Chalkley, G. E., et al. (2008). The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex. Mol Cell Biol. 28: 2920-2929. PubMed Citation: 18299390

Chiba, H., et al. (1994). Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res 22: 1815-20. PubMed Citation: 8208605

Collins, R. T., et al. (1999). Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J. 18: 7029-7040. PubMed Citation: 10601025

Collins, R. T. and Treisman, J. E. (2000). Osa-containing Brahma chromatin remodeling complexes are required for the repression of Wingless target genes. Genes Dev. 14: 3140-3152. 11124806

Colombié, N., et al. (2006). The Drosophila γ-tubulin small complex subunit Dgrip84 is required for structural and functional integrity of the spindle apparatus. Mol. Biol. Cell 17: 272-282. PubMed Citation: 16236791

Cosma, M. P., Tanaka, T. and Nasmyth, K. (1999). Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97(3): 299-311. PubMed Citation: 10319811

Cote, J., Peterson, C. L. and Workman, J. L. (1998). Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc. Natl. Acad. Sci. 95(9): 4947-4952. PubMed Citation: 9560208

Crosby, M. A., et al. (1999). The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol. Cell Biol. 19(2): 1159-70. PubMed Citation: 9891050

Curtis, B. J., Zraly, C. B., Marenda, D. R. and Dingwall, A. K. (2011). Histone lysine demethylases function as co-repressors of SWI/SNF remodeling activities during Drosophila wing development. Dev Biol 350: 534-547. Pubmed: 21146519

Dallas, P. B., Cheney, I. W., Liao, D., Bowrin, V., Byam, W., Pacchione, S., Kobayashi, R., Yaciuk, P. and Moran, E. (1998) p300/CREB binding protein-related protein p270 is a component of mammalian SWI/SNF complexes. Mol. Cell. Biol. 18: 3596-3603. PubMed Citation: 9584200

Dimova, D., et al. (1999). A role for transcriptional repressors in targeting the yeast Swi/Snf complex. Mol. Cell 4: 75-83. PubMed Citation: 10445029

Dingwall, K. D., et al. (1995). The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell 6: 777-791. PubMed Citation: 7579694

Dunaief, J. L., et al. (1994) The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119-130. PubMed Citation: 7923370

Dutta, A., Sardiu, M., Gogol, M., Gilmore, J., Zhang, D., Florens, L., Abmayr, S. M., Washburn, M. P. and Workman, J. L. (2017). Composition and function of mutant Swi/Snf complexes. Cell Rep 18(9): 2124-2134. PubMed ID: 28249159

Elfring, L. K., et al. (1994). Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol 14: 2225-34. PubMed Citation: 7908117

Elfring, L. K., et al. (1998). Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148(1): 251-265. PubMed Citation: 9475737

Filion, G. J., van Bemmel, J. G., Braunschweig, U., Talhout, W., Kind, J., Ward, L. D., Brugman, W., de Castro, I. J., Kerkhoven, R. M., Bussemaker, H. J. and van Steensel, B. (2010). Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143: 212-224. PubMed ID: 20888037

Fryer, C. J. and Archer, T. K. (1998). Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393: 88-91. PubMed Citation: 9590696

Gavin, I., Horn, P. J. and Peterson, C. L. (2001). SWI/SNF chromatin remodeling requires changes in DNA topology. Molec. Cell 7: 97-104. 11172715

Glassner, B. J. and Mortimer, R. K. (1994). Synergistic interactions between RAD5, RAD16 and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway. Radiat Res 139: 24-33

Griffin, C. T., Brennan, J. and Magnuson, T. (2008). The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development 135: 493-500. PubMed Citation: 18094026

Goldman-Levi, R., et al. (1996). Expanding the Mot1 subfamily: 89B helicase encodes a new Drosophila melanogaster SNF2-related protein which binds to multiple sites on polytene chromosomes. Nucleic Acids Res. 24(16): 3121-3128.

Gregory, S. L., et al. (1996). Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins. Mol. Cell. Biol. 16(3): 792-799

Gutiérrez, L., Zurita, M., Kennison, J. A. and Vázquez, M. (2003). The Drosophila trithorax group gene tonalli (tna) interacts genetically with the Brahma remodeling complex and encodes an SP-RING finger protein. Development 130: 343-354. 12466201

Hansis, C., et al. (2004). Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr. Biol. 14: 1475-1480. 15324664

Hassan, A. H., Neely, K. E. and Workman, J. L. (2001). Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104: 817-827. 11290320

Hassan, A. H., et al. (2002). Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111: 369-379. 12419247

He, J., Xuan, T., Xin, T., An, H., Wang, J., Zhao, G. and Li, M. (2014). Evidence for chromatin-remodeling complex PBAP-controlled maintenance of the Drosophila ovarian germline stem cells. PLoS One 9: e103473. PubMed ID: 25068272

He, N., Liu, M., Hsu, J., Xue, Y., Chou, S., Burlingame, A., Krogan, N. J., Alber, T. and Zhou, Q. (2010). HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 38(3): 428-438. PubMed ID: 20471948

Hirose, F., Ohshima, N., Shiraki, M., Inoue, Y. H., Taguchi, O., Nishi, Y. Matsukage, A. and Yamaguchi, M. (2001). Ectopic expression of DREF induces DNA synthesis, apoptosis, and unusual morphogenesis in the Drosophila eye imaginal disc: possible interaction with Polycomb and trithorax group proteins. Mol. Cell. Biol. 21(21): 7231-42. 11585906

Hsu, S. I. H., Yang, C. M., Sim, K. G., Hentschel, D. M., O'Leary, E. and Bonventre, J. V. (2001). TRIP-Br: a novel family of PHD zinc-finger- and bromodomain-interacting proteins that regulate the transcriptional activity of E2F-1/DP-1. EMBO J. 20: 2273-2285. 11331592

Hurtado, L., Farrona, S. and Reyes, J. C. (2006). The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Plant Mol. Biol. 62(1-2): 291-304. 16845477

Indra, A. K., et al. (2005). Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development 132: 4533-4544. 16192310

Ito, T., et al. (2008). Brm transactivates the telomerase reverse transcriptase (TERT) gene and modulates the splicing patterns of its transcripts in concert with p54(nrb). Biochem. J. 411: 201-209. PubMed Citation: 18042045

Janody, F., et al. (2004). A mosaic genetic screen reveals distinct roles for trithorax and Polycomb group genes in Drosophila eye development. Genetics 166: 187-200. 15020417

Jin, Y., Xu, J., Yin, M. X., Lu, Y., Hu, L., Li, P., Zhang, P., Yuan, Z., Ho, M. S., Ji, H., Zhao, Y. and Zhang, L. (2013). Brahma is essential for Drosophila intestinal stem cell proliferation and regulated by Hippo signaling. Elife 2: e00999. PubMed ID: 24137538

Jordan-Pla, A., Yu, S., Waldholm, J., Kallman, T., Ostlund Farrants, A. K. and Visa, N. (2018). SWI/SNF regulates half of its targets without the need of ATP-driven nucleosome remodeling by Brahma. BMC Genomics 19(1): 367. PubMed ID: 29776334

Kadam, S., et al. (2000). Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 14: 2441-2451.

Kadam, S. and Emerson, B. M. (2003). Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11: 377-389. 12620226

Kalionis, B. and O’Farrell, P. H. (1993). A universal target sequence is bound in vitro by diverse homeodomains. Mech. Dev. 43: 57-7

Kassabov, S. R., et al. (2003). SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11: 391-403. 12620227

Kehle, J., et al. (1998). dMi-2, a Hunchback-interacting protein that functions in Polycomb repression. Science 282(5395): 1897-900

Kennison, J.A. and Tamkun, J.W. (1988). Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. Proc. Natl. Acad. Sci. 85: 8136-8140

Khavari, P. A., et al. (1993). BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366: 170-4

Klebes, A., et al. (2005). Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 132: 3753-3765. 16077094

Koe, C. T., et al. (2014). The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages. Elife 3: e01906. PubMed ID: 24618901

Kondo, T. and Raff, M. (2004). Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev. 18(23): 2963-72. 15574597

Kruger, W., et al (1995). Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9: 2770-2779

LeGouy, E., et al. (1998). Differential preimplantation regulation of two mouse homologues of the yeast SWI2 protein. Dev. Dyn. 212(1): 38-48

Lessard, J., et al. (2007). An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55: 201-215. Medline abstract: 17640523

Lin, C., Smith, E. R., Takahashi, H., Lai, K. C., Martin-Brown, S., Florens, L., Washburn, M. P., Conaway, J. W., Conaway, R. C. and Shilatifard, A. (2010). AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 37(3): 429-437. PubMed ID: 20159561

Liu, K., et al. (2004). TopBP1 recruits Brg1/Brm to repress E2F1-induced apoptosis, a novel pRb-independent and E2F1-specific control for cell survival. Genes Dev. 18: 673-686. 15075294

Lorch, Y., Zhang, M. and Kornberg, R. D. (1999). Histone octamer transfer by a chromatin-remodeling complex. Cell 96(3): 389-92

Mardaryev, A. N., Gdula, M. R., Yarker, J. L., Emelianov, V. N., Poterlowicz, K., Sharov, A. A., Sharova, T. Y., Scarpa, J. A., Chambon, P., Botchkarev, V. A. and Fessing, M. Y. (2014). p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells. Development 141: 101-111. PubMed ID: 24346698

Memedula, S. and Belmont, A. S. (2003). Sequential recruitment of HAT and SWI/SNF components to condensed chromatin by VP16. Curr. Biol. 13: 241-246. 12573221

Mohrmann, L., et al. (2004). Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol. Cell. Biol. 24(8): 3077-88. 15060132

Mohrmann, L. and Verrijzer, C. P. (2005). Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681(2-3): 59-73. 15627498

Moshkin, Y. M., et al. (2002). Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev. 16: 2621-2626. 12381660

Muchardt, C. and Yaniv, M. (1993). A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12: 4279-90

Muchardt, C., et al. (1995). A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nuc. Acids Res. 23 1127-32

Muchardt, C., et al. (1996). The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15 (13): 3394-3402

Muchardt, C., et al. (1998). ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex. EMBO J. 17: 223-231

Muller, H., et al. (2006). A centrosome-independent role for γ-TuRC proteins in the spindle assembly checkpoint. Science 314: 654-657. PubMed Citation: 17068266

Munakata, T., Adachi, N., Yokoyama, N., Kuzuhara, T., and Horikoshi, M. (2000). A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5: 221-233. 10759893

Napolitano, M. A., et al. (2007). Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. J. Cell Sci. 120: 2904-2911. Medline abstract: 17666433

Neely, K. E., et al. (2002). Transcription activator interactions with multiple SWI/SNF subunits. Mol. Cell. Biol. 22: 1615-1625. 11865042

Nielsen, A. L., et al. (2002). Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1alpha. EMBO J: 21: 5797-5806. 12411497

Nowak, S. J., Aihara, H., Gonzalez, K., Nibu, Y. and Baylies, M. K. (2012). Akirin links twist-regulated transcription with the Brahma chromatin remodeling complex during embryogenesis. PLoS Genet 8: e1002547. PubMed ID: 22396663

Oh, H., Slattery, M., Ma, L., Crofts, A., White, K. P., Mann, R. S. and Irvine, K. D. (2013). Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell Rep 3: 309-318. PubMed ID: 23395637

O'Neill, D., et al. (1999). Tissue-specific and developmental stage-specific DNA binding by a mammalian SWI/SNF complex associated with human fetal-to-adult globin gene switching. Proc. Natl. Acad. Sci. 96(2): 349-54. PubMed ID: 9892636

Olave, I., et al. (2002). Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 16: 2509-2517. 12368262

Papoulas, O., et al. (1998). The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 125: 3955-3966. 9735357

Papoulas, O., et al. (2001). The HMG-domain protein BAP111 is important for the function of the BRM chromatin-remodeling complex in vivo. Proc. Natl. Acad. Sci. 98: 5728-5733. 11331758

Pattenden, S. G., et al. (2002). Interferon-gamma-induced chromatin remodeling at the CIITA locus is BRG1 dependent. EMBO J. 21: 1978-1986. 11953317

Pedersen, T. A., et al. (2001). Cooperation between C/EBPalpha, TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev. 15: 3208-3216. 11731483

Pena-Rangel, M. T., Rodriguez, I. and Riesgo-Escovar, J. R. (2002). A misexpression study examining dorsal thorax formation in Drosophila melanogaster. Genetics 160: 1035-1050. PubMed ID: 11901120

Perez-Martin, J. and Johnson, A. D. (1998). The C-terminal domain of Sin1 interacts with the SWI-SNF complex in yeast. Mol. Cell. Biol. 18(7): 4157-4164.

Phelan, M. L., et al. (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3(2): 247-53

Reyes, J. C., Muchardt, C. and Yaniv, M. (1997). Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J. Cell Biol. 137: 263-274

Peterson, C. L., Dingwall, A. and Scott, M. P. (1994). Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci 91: 2905-8

Prigozhina, N. L., et al. (2004) γ-Tubulin plays an essential role in the coordination of mitotic events. Mol. Biol. Cell 15: 1374-1386. PubMed Citation: 14668489

Reyes, J. C., et al. (1998). Altered control of cellular proliferation in the absence of mammalian brahma (SNF2). EMBO J. 17: 6979-6991

Ryan, M. P., Jones, R. and Morse, R. H. (1998). SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol. Cell. Biol. 18(4): 1774-1782

Sawa, H., Kouike, H. and Okano, H. (2000). Components of the SWI/SNF complex are required for asymmetric cell division in C. elegans. Molec. Cell 6: 617-624

Schnitzler, G., Sif, S. and Kingston, R. E. (1998). Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94(1): 17-27

Schoor, M., et al. (1999). Skeletal dysplasias, growth retardation, reduced postnatal survival, and impaired fertility in mice lacking the SNF2/SWI2 family member ETL1. Mech. Dev. 85(1-2): 73-83

Seo, S., Richardson, G. A. and Kroll, K. L. (2005a). The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132: 105-115. 15576411

Seo, S., et al. (2005b). Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev. 19(14): 1723-34. 16024661

Shanahan F., et al. (1999). Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI-SNF complex, and alters the ability of BRG1 to induce growth arrest. Mol. Cell. Biol. 19(2): 1460-9

Shevelyov, Y. Y., Lavrov, S. A., Mikhaylova, L. M., Nurminsky, I. D., Kulathinal, R. J., Egorova, K. S., Rozovsky, Y. M. and Nurminsky, D. I. (2009). The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc Natl Acad Sci U S A 106: 3282-3287. PubMed ID: 19218438

Shi, J., et al. (2013). Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 27: 2648-2662. PubMed ID: 24285714

Shi, J., Zheng, M., Ye, Y., Li, M., Chen, X., Hu, X., Sun, J., Zhang, X. and Jiang, C. (2014). Drosophila Brahma complex remodels nucleosome organizations in multiple aspects. Nucleic Acids Res. PubMed ID: 25081211

Shidlovskii, Y. V., et al. (2005). A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO J. 24: 97-107. PubMed Citation: 15616585

Sif, S., et al. (1998). Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12(8): 2842-2851

Skibinski, A., Breindel, J. L., Prat, A., Galvan, P., Smith, E., Rolfs, A., Gupta, P. B., Labaer, J. and Kuperwasser, C. (2014). The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage committment. Cell Rep 6: 1059-1072. PubMed ID: 24613358

Smith, M. B. and Weiler, K. S. (2010). Drosophila D1 overexpression induces ectopic pairing of polytene chromosomes and is deleterious to development. Chromosoma 119: 287-309. PubMed ID: 20127347

Srinivasan, S., et al. (2005). The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 132: 1623-1635. 15728673

Staehling-Hampton, K., et al. (1999). A genetic screen for modifiers of E2F in Drosophila melanogaster. Genetics 153: 275-287

Stankunas, K., et al. (2008). Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev. Cell 14: 298-311. PubMed Citation: 18267097

Sterner, D. E., et al. (1999). Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19(1): 86-98

Stokes, D. G., Tartof, K. D. and Perry, R. P. (1996). CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. 93(14): 7137-7142

Strober, B. E., et al. (1996). Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol. Cell. Biol. 16: 1576-1583

Studitsky, V.M., Clark, D.J., and Felsenfeld, G. (1994). A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76: 371-382

Stukenberg, P. T., et al. (1997). Systematic identification of mitotic phosphoproteins. Curr. Biol. 7(5): 338-48

Sumi-Ichinose, C., et al. (1997). SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells. Mol. Cell. Biol. 17(10): 5976-86

Sustar, A. and Schubiger, G. (2005). A transient cell cycle shift in Drosophila imaginal disc cells precedes multipotency. Cell 120: 383-393. 15707896

Sutton, A., Bucaria, J., Osley, M. A., and Sternglanz, R. (2001). Yeast ASF1 protein is required for cell cycle regulation of histone gene transcription. Genetics 158: 587-596. 11404324

Tamkun, J. W., et al. (1992). brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68: 561-72

Tamkun, J. W. (1995). The role of brahma and related proteins in transcription and development. Curr Opin Genet Dev 5: 473-477

Tea, J. S. and Luo, L. (2011). The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting. Neural Dev. 6: 5. PubMed Citation: 21284845

Terriente-Félix, A. and de Celis. J. F. (2009). Osa, a subunit of the BAP chromatin-remodelling complex, participates in the regulation of gene expression in response to EGFR signalling in the Drosophila wing. Dev. Biol. 329(2): 350-61. PubMed Citation: 19306864

Tie, F., Banerjee, R., Conrad, P. A., Scacheri, P. C. and Harte, P. J. (2012). Histone demethylase Utx and chromatin remodeler Brm bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol Cell Biol 32: 2323-2334. PubMed ID: 22493065

Tong, J. K., et al. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395(6705): 917-21

Tripoulas, N. A., et al. (1994). Molecular genetic analysis of the Drosophila melanogaster gene absent, small or homeotic discs1 (ash1). Genetics 137: 1027-1038

Trouche, D., et al. (1997). RB and hbrm cooperate to repress the activation functions of E2F1. Proc. Natl. Acad. Sci. 94(21): 11268-11273

Tsukiyama, T., Daniel, C., Tamkun, J. and Wu, C. (1995). ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83: 1021-1026

Tyagi, A., Ryme, J., Brodin, D., Ostlund-Farrants, A. K., Visa, N. (2009). SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS. Genet. 5: e1000470. PubMed Citation: 19424417

Tyler, J. K., et al. (1999). The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402: 555-560. 10591219

Tyler, J. K., et al. (2001). Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol. Cell. Bio. 21: 6574-6584. 11533245

Utley, R. T., et al. (1997). SWI/SNF stimulates the formation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding. J. Biol. Chem. 272(19): 12642-12649

Vázquez, M., Cooper, M. T., Zurita, M. and Kennison, J. A. (2008). γTub23C interacts genetically with brahma chromatin-remodeling complexes in Drosophila melanogaster. Genetics 180(2): 835-43. PubMed Citation: 18780727

Vázquez, M., Moore, L. and Kennison, J. A. (1999). The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the Brahma chromatin-remodeling factor to regulate transcription. Development 126: 733-742

Vorobyeva, N. E., et al. (2009). Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc. Natl. Acad. Sci. 106(27): 11049-54. PubMed Citation: 19541607

Vorobyeva, N. E., et al. (2011). SAYP interacts with DHR3 nuclear receptor and participates in ecdysone-dependent transcription regulation. Cell Cycle 10(11): 1821-7. PubMed Citation: 21519192

Vorobyeva, N. E., Nikolenko, J. V., Nabirochkina, E. N., Krasnov, A. N., Shidlovskii, Y. V. and Georgieva, S. G. (2012). SAYP and Brahma are important for 'repressive' and 'transient' Pol II pausing. Nucleic Acids Res 40: 7319-7331. PubMed ID: 22638575

Wade, P. A., et al. (1998). A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr. Biol. 8(14): 843-6. PubMed Citation: 9663395

Waldholm, J., et al. (2011). SWI/SNF regulates the alternative processing of a specific subset of pre-mRNAs in Drosophila melanogaster. BMC Mol. Biol. 12: 46. PubMed Citation: 22047075

Wang, S., Zhang, B. and Faller, D. V. (2002). Prohibitin requires Brg-1 and Brm for the repression of E2F and cell growth. EMBO J. 21: 3019-3028. 12065415

Wang, W., et al. (1996a). Diversity and specialization of mammalian SWI/SNG complexes. Genes. Dev. 10: 2117-30. PubMed Citation: 8804307

Wang, W., et al. (1996b). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15(19): 5370-5382. PubMed Citation: 8895581

Wang, W., et al. (1998). Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc. Natl. Acad. Sci. 95: 492-498. PubMed Citation: 9435219

Whitehouse, I., et al. (1999). Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400: 784-787. PubMed Citation: 10466730

Woodage, T., et al. (1997). Characterization of the CHD family of proteins. Proc. Natl. Acad..Sci. 94(21): 11472-11477. PubMed Citation: 9326634

Zhang, H. S., et al. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101: 79-89. PubMed Citation: 10778858

Zhao, K., et al. (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95(5): 625-36. PubMed Citation: 9845365

Zhimulev, I. F., Belyaeva, E. S., Makunin, I. V., Pirrotta, V., Volkova, E. I., Alekseyenko, A. A., Andreyeva, E. N., Makarevich, G. F., Boldyreva, L. V., Nanayev, R. A. and Demakova, O. V. (2003). Influence of the SuUR gene on intercalary heterochromatin in Drosophila melanogaster polytene chromosomes. Chromosoma 111: 377-398. PubMed ID: 12644953

Zhu, Y., Li, D., Wang, Y., Pei, C., Liu, S., Zhang, L., Yuan, Z. and Zhang, P. (2014). Brahma regulates the Hippo pathway activity through forming complex with Yki-Sd and regulating the transcription of Crumbs. Cell Signal. PubMed ID: 25496831

Zraly, C. B., Middleton, F. A. and Dingwall, A. K. (2006). Hormone-response genes are direct in vivo regulatory targets of Brahma (SWI/SNF) complex function. J Biol Chem 281(46): 35305-35315. PubMed ID: 16990270


brahma: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology | Effects of Mutation

date revised: 20 December 2018

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.