Mothers against dpp
Ables, E. T. and Drummond-Barbosa, D. (2010). The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell 7: 581-592. PubMed Citation: 21040900
Adachi-Yamada, T., et al. (1999). p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis. Mol. Cell. Biol. 19(3): 2322-9. PubMed Citation: 10022918
Adam, R. C., Yang, H., Ge, Y., Lien, W. H., Wang, P., Zhao, Y., Polak, L., Levorse, J., Baksh, S. C., Zheng, D. and Fuchs, E. (2018). Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression. Cell Stem Cell 22(3): 398-413. PubMed ID: 29337183
Akizu, N., et al. (2010). H3K27me3 regulates BMP activity in developing spinal cord. Development 137(17): 2915-25. PubMed Citation: 20667911
Alarcon, C., et al.. (2009). Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139(4): 757-69. PubMed Citation: 19914168
Aldaz, S., Morata, G. and Azpiazu, N. (2005). Patterning function of homothorax/extradenticle in the thorax of Drosophila. Development 132(3): 439-46. 15634705
Aleman, A., Rios, M., Juarez, M., Lee, D., Chen, A. and Eivers, E. (2014). Mad linker phosphorylations control the intensity and range of the BMP-activity gradient in developing Drosophila tissues. Sci Rep 4: 6927. PubMed ID: 25377173
Allan, D., St. Pierre, S. E., Miguel-Aliaga, I. and Thor, S. (2003). Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell 113: 73-86. 12679036
Anderson, J., Salzer, C. L. and Kumar, J. P. (2006). Regulation of the retinal determination gene dachshund in the embryonic head and developing eye of Drosophila. Dev. Biol. 297(2): 536-49. 16780828
Aragón, E., et al. (2011). A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes Dev. 25(12): 1275-88. PubMed Citation: 21685363
Atfi, A., et al. (1997). Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein Kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J. Biol. Chem. 272(40): 24731-24734. PubMed Citation: 9312063
Aubin, J., Davy, A. and Soriano, P. (2004). In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev. 18: 1482-1494. 15198985
Azpiazu, N. and Morata, G. (2000). Function and regulation of homothorax in the wing imaginal disc of Drosophila. Development 127: 2685-2693. PubMed Citation: 10821766
Ben-Zvi, D. and Barkai, N. (2010). Scaling of morphogen gradients by an expansion-repression integral feedback control. Proc. Natl. Acad. Sci. 107: 6924-6929. PubMed Citation: 20356830
Berke, B., Wittnam, J., McNeill, E., Van Vactor, D. L. and Keshishian, H. (2013). Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity. J Neurosci 33: 17937-17950. PubMed ID: 24198381
Baumann, A., et al. (2010). Paralogous genes involved in juvenile hormone action in Drosophila melanogaster. Genetics 185: 1327-1336. PubMed Citation: 20498297
Bhushan, A., Chen, Y. and Vale, W. (1998). Smad7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev. Biol. 200(2): 260-268. PubMed Citation: 9705232
Candia, A. F., et al. (1997). Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124(22): 4467-4480. PubMed Citation: 9409665
Casellas, R. and Brivanlou, A. H. (1998). Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. Dev. Biol. 198(1): 1-12. PubMed Citation: 9640328
Certel, K., et al. (2000). Restricted patterning of vestigial expression in Drosophila wing imaginal discs requires synergistic activation by both Mad and the Drifter POU domain transcription factor. Development 127: 3173-3183. PubMed Citation: 10862753
Chen, D. and McKearin, D. (2003). Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr. Biol. 13: 1786-1791. 14561403
Chen, H. B., Shen, J., Ip, Y. T. and Xu, L. (2006). Identification of phosphatases for Smad in the BMP/DPP pathway. Genes Dev. 20: 648-653. 16510868
Chen, K., Merino, C., Sigrist, S. J. and Featherstone, D. E. (2005). The 4.1 protein coracle mediates subunit-selective anchoring of Drosophila glutamate receptors to the postsynaptic actin cytoskeleton. J Neurosci 25(28): 6667-6675. PubMed ID: 16014728
Chen, X., Rubock, M. J. and Whitman, M. (1996). A transcriptional partner for MAD proteins in TGF-ß signalling. Nature 383: 691-696. PubMed Citation: 8878477
Chen, X., et al. (1997). Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389: 85-89. PubMed Citation: 9288972
Chen, X. and Xu, L. (2010). Specific nucleoporin requirement for Smad nuclear translocation. Mol. Cell. Biol. 30(16): 4022-34. PubMed Citation: 20547758
Chen, Y. G., et al. (1998). Determinants of specificity in TGF-beta signal transduction. Genes Dev. 12(14): 2144-2152. PubMed Citation: 9679059
Chen, Y. G. and Massague, J. (1999). Smad1 recognition and activation by the ALK1 group of transforming growth factor-beta family receptors. J. Biol. Chem. 274(6): 3672-7. PubMed Citation: 9920917
Cho, A., Tang, Y., Davila, J., Deng, S., Chen, L., Miller, E., Wernig, M. and Graef, I. A. (2014). Calcineurin signaling regulates neural induction through antagonizing the BMP pathway. Neuron 82: 109-124. PubMed ID: 24698271
Dai, H., et al. (2000). The zinc finger protein Schnurri acts as a Smad partner in mediating the transcriptional response to Decapentaplegic. Dev. Biol. 227: 373-387. PubMed Citation: 11071761
Damen, W. G. (2007). Evolutionary conservation and divergence of the segmentation process in arthropods. Dev. Dyn. 236: 1379-1391. PubMed Citation: 17440988
Das, P., et al. (1998). The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development 125: 1519-1528. PubMed Citation: 9502733
Datta, P. K., Blake, M. C. and Moses, H. L. (2000). Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta -induced physical and functional interactions between smads and Sp1. J. Biol. Chem. 275(51): 40014-9. 11054406
Davis, B. N., Hilyard, A. C., Lagna, G. and Hata, A. (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200): 56-61. PubMed citation: 18548003
de Caestecker, M. P., et al. (1997). Characterization of functional domains within Smad4/DPC4. J. Biol. Chem. 272 (21): 13690-13696. PubMed Citation: 9153220
Decotto, E. and Ferguson, E. L. (2001). A positive role for Short gastrulation in modulating BMP signaling during dorsoventral patterning in the Drosophila embryo. Development 128: 3831-3841. 11585808
Delaune, E., Lemaire, P. and Kodjabachian, L. (2005). Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132(2): 299-310. 15590738
Dennler, S., et al. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17(11): 3091-3100. PubMed Citation: 9606191
Dick, A., Risau, W. and Drexler, H. (1998). Expression of Smad1 and Smad2 during embryogenesis suggests a role in organ development. Dev. Dyn. 211(4): 293-305. PubMed Citation: 9566949
Dorfman, R. and Shilo, B.-Z. (2001). Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region. Development 128: 965-972. 11222150
Duan, X., Liang, Y. Y., Feng, X. H. and Lin, X. (2006). Protein serine/threonine phosphatase PPM1A dephosphorylates Smad1 in the bone morphogenetic protein signaling pathway. J. Biol. Chem. 281: 36526-36532. Medline abstract: 16931515
Dudu, V., Bittig, T., Entchev, E., Kicheva, A., Julicher, F. and Gonzalez-Gaitan, M. (2006). Postsynaptic mad signaling at the Drosophila neuromuscular junction. Curr. Biol. 16(7): 625-35. 16581507
Damen, W. G. (2007). Evolutionary conservation and divergence of the segmentation process in arthropods. Dev. Dyn. 236: 1379-1391. PubMed Citation: 17440988
Eaton, B. A. and Davis, G. W. (2005). LIM Kinase1 controls synaptic stability downstream of the type II BMP receptor. Neuron 47: 695-708. PubMed ID: 16129399
Eivers E., et al. (2009). Mad is required for wingless signaling in wing development and segment patterning in Drosophila. PLoS ONE 4: e6543. PubMed Citation: 19657393
Erceg, J., Saunders, T. E., Girardot, C., Devos, D. P., Hufnagel, L. and Furlong, E. E. (2014). Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's activity. PLoS Genet 10: e1004060. PubMed ID: 24391522
Estella, C., McKay, D. J. and Mann, R. S. (2008). Molecular integration of Wingless, Decapentaplegic, and autoregulatory inputs into Distalless during Drosophila leg development. Dev. Cell 14: 86-96. PubMed Citation: 18194655
Faure, S., et al. (2002). Endogenous patterns of BMP signaling during early chick development. Dev. Biol. 244: 44-65. 11900458
Feng, X. H., et al. (1998). The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 12(14): 2153-2163. PubMed Citation: 9679060
Foronda, D., Pérez-Garijo, A. and Martín, F. A. (2009). Dpp of posterior origin patterns the proximal region of the wing. Mech. Dev. 126(3-4): 99-106. PubMed Citation: 19118625
Fu, W. and Baker, N. E. (2003). Deciphering synergistic and redundant roles of Hedgehog, Decapentaplegic and Delta that drive the wave of differentiation in Drosophila eye development. Development 130: 5229-5239. 12954721
Fuentes-Medel, Y., Ashley, J., Barria, R., Maloney, R., Freeman, M. and Budnik, V. (2012). Integration of a retrograde signal during synapse formation by glia-secreted TGF-beta ligand. Curr Biol 22: 1831-1838. PubMed ID: 22959350
Furtado, M. B., et al. (2008). BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes Dev. 22(21): 3037-49. PubMed Citation: 18981480
Galant, R. and Carroll, S. B. (2002). Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415: 910-913. PubMed citation: 11859369
Gao, S., Steffen, J. and Laughon, A. (2005). DPP-responsive silencers are bound by a trimeric mad-medea complex. J. Biol. Chem. 280(43): 36158-64. 16109720
Gao, S. and Laughon, A. (2006). Decapentaplegic-responsive silencers contain overlapping mad-binding sites. J. Biol. Chem. 281(35): 25781-90. 16829514
Gavin-Smyth, J., Wang, Y. C., Butler, I. and Ferguson, E. L. (2013). A genetic network conferring canalization to a bistable patterning system in Drosophila. Curr Biol 23: 2296-2302. PubMed ID: 24184102
Germain, S., et al. (2000). Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14: 435-451. PubMed Citation: 10691736
George, H. and Terracol, R. (1997). The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors. Genetics 146(4): 1345-63. PubMed Citation: 9258679
Gilboa, L., and Lehmann, R. (2004). Repression of primordial germ cell differentiation parallels germ line stem cell maintenance. Curr. Biol. 14: 981-986. 15182671
Goold, C. P. and Davis, G. W. (2007). The BMP Ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 56: 109-123. Medline abstract: 17920019
Goswami, M., Uzgare, A. R. and Sater, A. K. (2001). Regulation of MAP kinase by the BMP-4/TAK1 pathway in Xenopus ectoderm. Dev. Bio. 236: 259-270. 11476570
Graff, J. M., Bansal, A. and Melton, D. A. (1996). Xenopus Mad proteins transduce distinct subsets of signals for the TGFß superfamily. Cell 85: 479-487
Grienenberger, A., et al. (2003). Tgfß signaling acts on a Hox response element to confer specificity and diversity to Hox protein function. Development 130: 5445-5455. 14507783
Gruendler, C., Lin, Y., Farley, J. and Wang, T. (2001). Proteasomal degradation of Smad1 induced by bone morphogenetic proteins. J. Biol. Chem. 276: 46533-46543. 11571290
Guss, K. A. et al. (2001). Control of a genetic regulatory network by a selector gene. Science 292: 1164-1167. 11303087
Halfon, M. S., et al. (2000). Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell 103: 63-74.
Hamaratoglu, F., et al. (2011). Dpp signaling activity requires Pentagone to scale with tissue size in the growing Drosophila wing imaginal disc. PLoS Biol. 9(10): e1001182. PubMed Citation: 22039350
Han, Z. S., et al. (1998). A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol. Cell. Biol. 18(6): 3527-39
Hata, A., et al. (1998). Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor Genes Dev. 12: 186-197
He, A., Kong, S. W., Ma, Q., and Pu, W. T. (2011). Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc. Natl. Acad. Sci. 108: 5632-5637. PubMed Citation: 21415370
Henderson, K. D., Isaac, D. D. and Andrew, D. J. (1999). Cell fate specification in the Drosophila salivary gland: the integration of homeotic gene function with the DPP signaling cascade. Dev. Biol. 205(1): 10-21
Hild, M., et al. (1999). The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 126(10): 2149-2159
Hodar, C., Zuniga, A., Pulgar, R., Travisany, D., Chacon, C., Pino, M., Maass, A. and Cambiazo, V. (2014). Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo. Gene 535: 210-217. PubMed ID: 24321690
Holmqvist, P. H., et al. (2012). Preferential genome targeting of the CBP co-activator by Rel and Smad proteins in early Drosophila melanogaster embryos. PLoS Genet. 8(6): e1002769. PubMed Citation: 22737084
Hoodless, P. A., et al. (1996). MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85: 489-500.
Hoodless, P. A., et al. (1999), Dominant-negative Smad2 mutants inhibit Activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev. Biol. 207(2): 364-79
Howell, M. and Hill, C. S. (1997). XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J. 16(24): 7411-7421
Hu, M. C., Piscione, T. D. and Rosenblum, N. D. (2003). Elevated SMAD1/ß-catenin molecular complexes and renal medullary cystic dysplasia in ALK3 transgenic mice. Development 130: 2753-2766. 12736218
Hu, M. C. and Rosenblum, N. D. (2005). Smad1, ß-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development 132: 215-225. 15576399
Huang, J., et al. (2011). DPP-mediated TGFβ signaling regulates juvenile hormone biosynthesis by activating the expression of juvenile hormone acid methyltransferase. Development 138(11): 2283-91. PubMed Citation: 21558376
Hudson, J. B., et al. (1998). The Drosophila Medea gene is required downstream of dppand encodes a functional homolog of human Smad4. Development 125: 1407-1420
Hullinger, T. G., et al. (2001). TGFbeta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp. Cell Res. 262(1): 69-74. 11120606
Inoue, H., et al. (1998). Interplay of signal mediators of Decapentaplegic (Dpp): Molecular characterization of Mothers against dpp, Medea, and Daughters against dpp. Mol. Biol. Cell 9(8): 2145-2156
Inoue, T. and Thomas, J. H. (2000). Targets of TGF-beta signaling in Caenorhabditis elegans dauer formation. Dev. Biol. 217: 192-204.
Ishitani, T., (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399: 798-802. Medline abstract: 10391247
Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., Shibuya, H., Moon, R. T., Ninomiya-Tsuji, J. and Matsumoto, K. (2003a). The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol. 23: 131-139. Medline abstract: 12482967
Ishitani, T., Ninomiya-Tsuji, J. and Matsumoto, K. (2003b). Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol. Cell. Biol. 23: 1379-1389. Medline abstract: 12556497
Itoh, F., et al. (2001). Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J. 20: 4132-4142. 11483516
Jang, A. C., Chang, Y. C., Bai, J. and Montell, D. (2009). Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat Cell Biol 11: 569-579. PubMed Citation: 19350016
Jin, W., et al. (2006). Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev. Cell 10(4): 461-71. 16580992
Jordan-Alvarez, S., Santana, E., Casas-Tinto, S., Acebes, A. and Ferrus, A. (2017). The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One (9): e0184238. PubMed ID: 28892511
Junion, G., et al. (2012). A transcription factor collective defines cardiac cell fate and reflects lineage history. Cell 148(3): 473-86. PubMed Citation: 22304916
Karaulanov, E., Knochel, W. and Niehrs, C. (2004). Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. EMBO J. 23: 844-856. 14963489
Kavsak, P., et al. (2000). Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the Tgf-beta receptor for degradation. Mol. Cell 6: 1365-1375. 11163210
Kanei-Ishii, C., et al. (2004). Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes Dev. 18: 816-829. Medline abstract: 15082531
Kang, M. J., Hansen, T. J., Mickiewicz, M., Kaczynski, T. J., Fye, S. and Gunawardena, S. (2014). Disruption of axonal transport perturbs Bone Morphogenetic Protein (BMP) - signaling and contributes to synaptic abnormalities in rwo neurodegenerative diseases. PLoS One 9: e104617. PubMed ID: 25127478
Kida, Y., et al. (2004). Chick Dach1 interacts with the Smad complex and Sin3a to control AER formation and limb development along the proximodistal axis. Development 131: 4179-4187. 15280207
Kim, J., et al. (1997). Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388: 304-8
Kirkpatrick, H., Johnson, K. and Laughon, A. (2001). Repression of Dpp targets by binding of Brinker to Mad sites. J. Biol. Chem. 276: 18216-18222. 11262410
Knockaert, M., Sapkota, G., Alarcon, C., Massague, J. and Brivanlou, A. H. (2006). Unique players in the BMP pathway: small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling. Proc. Natl. Acad. Sci. 103: 11940-11945. Medline abstract: 16882717
König, A., Yatsenko, A. S., Weiss, M. and Shcherbata, H. R. (2011). Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation. EMBO J. 30(8): 1549-62. PubMed Citation: 21423150
Kopp, E., Medzhitov, R., Carothers, J., Xiao, C., Douglas, I., Janeway, C.A., and Ghosh, S. 1999. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes & Dev. 13: 2059-2071. 10465784
Kramer, C., et al. (2002). Maternally supplied Smad5 is required for ventral specification in zebrafish embryos prior to zygotic Bmp signaling. Dev. Bio. 250: 263-279. 12376102
Kretzschmar, M., et al. (1997). The TGF-ß family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11: 984-995. PubMed Citation: 9136927
Kretzschmar, M., et al. (1999). A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 13(7): 804-816. PubMed Citation: 10197981
Kubota, K., et al. (2000). EGF receptor attenuates Dpp signaling and helps to distinguish the wing and leg cell fates in Drosophila. Development 127: 3769-3776. PubMed Citation: 10934021
Kusanagi, K., et al. (2000). Characterization of a bone morphogenetic protein-responsive Smad-binding element. Mol. Biol. Cell 11: 555-565. PubMed Citation: 10679014
Kwon, C., et al. (2004). Opposing inputs by Hedgehog and Brinker define a stripe of hairy expression in the Drosophila leg imaginal disc. Development 131: 2681-2692. 15128656
Labbe, E., Letamendia, A. and Attisano, L. (2000). Association of smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc. Natl. Acad. Sci. 97(15): 8358-63.
Lagna, G., et al. (1996). Partnership between DPC4 and SMAD proteins in TGF-ß signaling pathways. Nature 383: 832-836. PubMed Citation: 8893010
Lechleider, R. J., et al. (2001). Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev. Biol. 240(1): 157-67. 11784053
Lecuit, T., et al. (1996). Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381: 387-393. PubMed Citation: 8632795
Le Dréau, G., et al. (2011). Canonical BMP7 activity is required for the generation of discrete neuronal populations in the dorsal spinal cord. Development 139(2): 259-68. PubMed Citation: 22159578
Lee, H. H. and Frasch, M. (2005). Nuclear integration of positive Dpp signals, antagonistic Wg inputs and mesodermal competence factors during Drosophila visceral mesoderm induction. Development 132: 1429-1442. 15750188
Lee, K.-H., Evans, S., Ruan, T. Y. and Lassar, A. B. (2004). SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac-specific expression of a GATA4/5/6-dependent chick Nkx2.5 enhancer. Development 131: 4709-4723. 15329343
LeSueur, J. A. and Graff, J. M. (1999). Spemann organizer activity of Smad10. Development 126(1): 137-146. PubMed Citation: 9834193
Letizia, A., Barrio, R. and Campuzano, S. (2007). Antagonistic and cooperative actions of the EGFR and Dpp pathways on the iroquois genes regulate Drosophila mesothorax specification and patterning. Development 134(7): 1337-46. Medline abstract: 17329358
Li, X., Liu, M., Ren, X., Loncle, N., Wang, Q., Hemba-Waduge, R. U., Yu, S. H., Boube, M., Bourbon, H. G., Ni, J. Q. and Ji, J. Y. (2020). The Mediator CDK8-Cyclin C complex modulates Dpp signaling in Drosophila by stimulating Mad-dependent transcription. PLoS Genet 16(5): e1008832. PubMed ID: 32463833
Liang, H. L., Xu, M., Chuang, Y. C. and Rushlow, C. (2012). Response to the BMP gradient requires highly combinatorial inputs from multiple patterning systems in the Drosophila embryo. Development. 139(11): 1956-64. PubMed Citation: 22513375
Liao, E. H., Gray, L., Tsurudome, K., El Mounzer, W., Elazzouzi, F., Baim, C., Farzin, S., Calderon, M. R., Kauwe, G. and Haghighi, A. P. (2018). Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction. PLoS Genet 14(1): e1007184. PubMed ID: 29373576
Liberatore, C. M., et al. (2002). Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev. Biol. 244: 243-256. 11944934
Lien, C. L., et al. (2002). Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev. Biol. 244: 257-266. 11944935
Lilja, T., et al. (2003). The CBP coactivator functions both upstream and downstream of Dpp/Screw signaling in the early Drosophila embryo. Dev. Biol. 262: 294-302. 14550792
Liu, B., et al. (1999). FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals. Mol. Cell. Biol. 19(1): 424-30
Liu, F., Pouponnot, C. and Massague, J. (1997). Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 11(23): 3157-3167
Liu, X., et al. (1997). Transforming growth factor beta-induced phosphorylation of smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc. Natl. Acad. Sci. 94(20): 10669-10674
Liu, Z., Huang, Y., Hu, W., Huang, S., Wang, Q., Han, J. and Zhang, Y. Q. (2014). dAcsl, the Drosophila Ortholog of Acyl-CoA Synthetase Long-Chain Family Member 3 and 4, Inhibits Synapse Growth by Attenuating Bone Morphogenetic Protein Signaling via Endocytic Recycling. J Neurosci 34: 2785-2796. PubMed ID: 24553921
Lo, R. S., et al. (1998). The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. EMBO J. 17: 996-1005
Lo, R. S., Wotton, D. and Massague, J. (2001). Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J. 20: 128-136
Macías-Silva, M., et al. (1996). MADR2 is a substrate of the TGFß receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87: 1215-24
Macias-Silva, M., et al. (1998). Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J. Biol. Chem. 273(40): 25628-36
Mandel, E. M., et al. (2010). The BMP pathway acts to directly regulate Tbx20 in the developing heart. Development 137(11): 1919-29. PubMed Citation: 20460370
Marqués, G., et al. (2002). The Drosophila BMP type II receptor Wishful thinking regulates neuromuscular synapse morphology and function. Neuron 33: 529-543. 11856528
Marquez, R. M., et al. (2001). Transgenic analysis of the Smad family of TGF-ß signal transducers in Drosophila melanogaster suggests new roles and new interactions between family members. Genetics 157: 1639-1648. 11290719
Massagué, J. (1996). TGFß signaling: Receptors, transducers and Mad proteins. Cell 85: 947-950
McCabe, B. D., et al. (2003). The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39: 241-254. 12873382
Meersseman, G., et al. (1997). The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation. Mech Dev 61 (1-2): 127-140
Melhuish, T. A. and Wotton, D. (2000). The interaction of the carboxyl terminus-binding protein with the Smad corepressor TGIF is disrupted by a holoprosencephaly mutation in TGIF. J. Biol. Chem. 275(50): 39762-6. 10995736
Merino, C., Penney, J., Gonzalez, M., Tsurudome, K., Moujahidine, M., O'Connor, M. B., Verheyen, E. M. and Haghighi, P. (2009). Nemo kinase interacts with Mad to coordinate synaptic growth at the Drosophila neuromuscular junction. J Cell Biol 185(4): 713-725. PubMed ID: 19451277
Messenger, N. J., et al. (2005). Functional specificity of the Xenopus T-domain protein Brachyury is conferred by its ability to interact with Smad1. Dev. Cell 8(4): 599-610. 15809041
Monsoro-Burq, A.-H. and Le Douarin, N. (2000). Left-right asymmetry in BMP4 signalling pathway during chick gastrulation. Mech. Dev. 97: 105-108.
Moustakas, A. and Kardassis, D. (1998). Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc. Natl. Acad. Sci. 95(12): 6733-6738
Müller, B., et al. (2003). Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient. Cell 113: 221-233. 12705870
Nahm, M., et al. (2010a), The Cdc42-selective GAP rich regulates postsynaptic development and retrograde BMP transsynaptic signaling. J Cell Biol 191: 661–675. PubMed ID: 21041451
Nahm M, et al. (2010b). dCIP4 (Drosophila Cdc42-interacting protein 4) restrains synaptic growth by inhibiting the secretion of the retrograde Glass bottom boat signal. J Neurosci 30: 8138–8150. PubMed ID: 20554864
Nakashima, K., et al. (1999). Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284(5413): 479-482. PubMed ID: 10205054
Nakayama, T., et al. (1998a). Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development 125(5): 857-867
Nakayama, T., et al. (1998b). Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. Genes Cells 3(6): 387-94
Nelles, L., et al. (2003). Organization of the mouse Zfhx1b gene encoding the two-handed zinc finger repressor Smad-interacting protein-1. Genomics 82(4): 460-9. 13679026
Newfeld, S. J., et al. (1996). Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-ß responsive cells. Development 122: 2099-2108. PubMed Citation: 8681791
Newfeld, S. J., et al. (1997). Mothers against dpp participates in a DPP/TGF-beta responsive serine-threonine kinase signal transduction cascade. Development 124(16): 3167-3176. PubMed Citation: 9272957
Nguyen, H. T. and Xu, X. (1998). Drosophila mef2 expression during mesoderm development is controlled by a complex array of cis-acting regulatory modules. Dev. Biol. 204(2): 550-66. PubMed Citation: 9882489
Niepielko, M. G., Hernáiz-Hernández, Y. and Yakoby, N. (2011). BMP signaling dynamics in the follicle cells of multiple Drosophila species. Dev. Biol. 354(1): 151-9. PubMed Citation: 21402065
Nitta, K. R., Tanegashima, K., Takahashi, S. and Asashima, M. (2004). XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Dev. Biol. 275(1): 258-67. 15464588
Ogasawara, T., Kawaguchi, H., Jinno, S., Hoshi, K., Itaka, K., Takato, T., Nakamura, K. and Okayama, H. (2004). Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol. Cell Biol. 24(15): 6560-8. 15254224
Osada, S.-I., et al. (2000). Activin/Nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127: 2503-2514. 10804190
Osada, S.-I. Ohmori, S.-y. and Taira, M. (2003). XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 130: 1783-1794. 12642484
Patterson, G. I., et al. (1997). The DAF-3 smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev. 11(20): 2679-2690
Peterson, A. J., Jensen, P. A., Shimell, M., Stefancsik, R., Wijayatonge, R., Herder, R., Raftery, L. A. and O'Connor, M. B. (2012). R-Smad competition controls activin receptor output in Drosophila. PLoS One 7: e36548. PubMed ID: 22563507
Phippen, T. M., et al. (2000). Drosophila C-terminal binding protein functions as a context-dependent transcriptional co-factor and interferes with both mad and groucho transcriptional repression. J. Biol. Chem. 275(48): 37628-37. 10973955
Piccioli, Z. D. and Littleton, J. T. (2014). Retrograde BMP signaling modulates rapid activity-dependent synaptic growth via presynaptic LIM kinase regulation of cofilin. J Neurosci 34: 4371-4381. PubMed ID: 24647957
Podos, S. D., Hanson, K. K., Wang, Y.-C. and Ferguson, E. L. (2001). The Smurf1 ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. Dev. Cell 1: 567-578. 11703946
Postigo, A. A. (2003a). Opposing functions of ZEB proteins in the regulation of the TGFß/BMP signaling pathway. EMBO J. 22: 2443-2452. 12743038
Postigo, A. A., Depp, J. L., Taylor, J. T. and Kroll, K. L. (2003b). Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 22: 2453-2462. 12743039
Prall, O. W. J. et al. (2007). An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128: 947-959. Medline abstract: 17350578
Pyrowolakis, G., Hartmann, B., Muller, B., Basler, K. and Affolter, M. (2004). A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. Dev. Cell 7: 229-240. PubMed citation: 15296719
Qin, B. Y., et al. (2001). Structural basis of Smad1 activation by receptor kinase phosphorylation. Mol. Cell 8: 1303-1312. 11779505
Qian, J., Zhang, Z., Liang, J., Ge, Q., Duan, X., Ma, F. and Li, F. (2011). The full-length transcripts and promoter analysis of intergenic microRNAs in Drosophila melanogaster. Genomics 97: 294-303. Pubmed: 21333734
Raftery, L. A., et al. (1995). Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139: 241-254
Raftery, L.A. and Sutherland, D. J. (1999). TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev. Biol. 210(2): 251-68
Rawson, J. M., Lee, M., Kennedy, E. L. and Selleck, S. B. (2003). Drosophila neuromuscular synapse assembly and function require the TGF-beta type I receptor saxophone and the transcription factor Mad. J. Neurobiol. 55: 134-150. 12672013
Retting, K. N., Song, B., Yoon, B. S. and Lyons, K. M. (2009). BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136(7): 1093-104. PubMed Citation: 19224984
Rios, I., et al. (2004). Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development 131: 3159-3168. 15197161
Ruiz, L., Kaczmarska, Z., Gomes, T., Aragon, E., Torner, C., Freier, R., Baginski, B., Martin-Malpartida, P., de Martin Garrido, N., Marquez, J. A., Cordeiro, T. N., Pluta, R. and Macias, M. J. (2021). Unveiling the dimer/monomer propensities of Smad MH1-DNA complexes. Comput Struct Biotechnol J 19: 632-646. PubMed ID: 33510867
Rushlow, C., et al. (2001). Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev. 15: 340-351. 11159914
Saller, E. and Bienz, M. (2001). Direct competition between Brinker and Drosophila Mad in Dpp target gene transcription. EMBO Reports 2: 298-305. 11306550
Sardi, J., Bener, M. B., Simao, T., Descoteaux, A. E., Slepchenko, B. M. and Inaba, M. (2021). Mad dephosphorylation at the nuclear pore is essential for asymmetric stem cell division. Proc Natl Acad Sci U S A 118(13). PubMed ID: 33753475
Savage, C., et al. (1996). Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc. Natl. Acad. Sci. 93: 790-794. PubMed Citation: 8570636
Schlesinger, J., et al. (2011). The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet. 7: e1001313. PubMed Citation: 21379568
Schmierer, B. and Hill, C. S. (2005). Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol. Cell. Biol. 25: 9845-9858. Medline abstract: 16260601
Sekelsky, J. J., et al. (1995). Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139: 1347-1358. PubMed Citation: 7768443
Seoane, J., et al. (2004). Integration of Smad and Forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211-223. 15084259
Sheng, G., dos Reis, M. and Stern, C. D. (2003). Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell 115(5): 603-13. 14651851
Shi, Y., et al. (1997). A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388(6637): 87-93
Shivdasani, A. A. and Ingham, P. W. (2003). Regulation of stem cell maintenance and transit amplifying cell proliferation by TGF-ß signaling in Drosophila spermatogenesis. Curr. Biol. 13: 2065-2072. 14653996
Smit, L., Baas, A., Kuipers, J., Korswagen, H., van de Wetering, M. and Clevers, H. (2004). Wnt activates the Tak1/Nemo-like kinase pathway. J. Biol. Chem. 279: 17232-17240. Medline abstract: 14960582
Song, C., Leahy, S. N., Rushton, E. M. and Broadie, K. (2022). RNA-binding FMRP and Staufen sequentially regulate the coracle scaffold to control synaptic glutamate receptor and bouton development. Development. PubMed ID: 35394012
Song, X., et al. (2004). Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131(6): 1353-64. 14973291
Sotillos, S. and de Celis, J. F. (2006). Regulation of decapentaplegic expression during Drosophila wing veins pupal development. Mech. Dev. 123(3): 241-51. 16423512
Sulkowski, M., Kim, Y. J. and Serpe, M. (2013). Postsynaptic glutamate receptors regulate local BMP signaling at the Drosophila neuromuscular junction. Development 141(2):436-47. PubMed ID: 24353060
Sulkowski, M.J., Han, T.H., Ott, C., Wang, Q., Verheyen, E.M., Lippincott-Schwartz, J. and Serpe, M. (2016). A novel, noncanonical BMP pathway modulates synapse maturation at the Drosophila neuromuscular junction. PLoS Genet 12: e1005810. PubMed ID: 26815659
Sun, K., Westholm, J. O., Tsurudome, K., Hagen, J. W., Lu, Y., Kohwi, M., Betel, D., Gao, F. B., Haghighi, A. P., Doe, C. Q. and Lai, E. C. (2012). Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genet 8: e1002515. Pubmed: 22347817
Sutherland, D. J., et al. (2003). Stepwise formation of a SMAD activity gradient during dorsal-ventral patterning of the Drosophila embryo. Development 130: 5705-5716. 14534137
Suzuki, A., et al. (1997). Smad5 induces ventral fates in Xenopus embryo. Dev. Biol. 184 (2): 402-405
Szuts, D. and Bienz, M. (2000). LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator. Proc. Natl. Acad. Sci. 97: 5351-5356.
Takaesu, N. T., et al. (2002). Combinatorial signaling by an unconventional Wg pathway and the Dpp pathway requires Nejire (CBP/p300) to regulate dpp expression in posterior tracheal branches. Dev. Biol. 247: 225-236. 12086463
Takaesu, N. T., et al. (2006). dSno facilitates baboon signaling in the Drosophila brain by switching the affinity of Medea away from Mad and toward dSmad2. Genetics 174(3): 1299-313. Medline abstract: 16951053
Takaesu, N. T., Bulanin, D. S., Johnson, A. N., Orenic, T. V. and Newfeld, S. J. (2008). A combinatorial enhancer recognized by Mad, TCF and Brinker first activates then represses dpp expression in the posterior spiracles of Drosophila. Dev. Biol. 313(2): 829-43. PubMed Citation: 18068697
Tang, S. J., et al. (1998). The Tlx-2 homeobox gene is a downstream target of BMP signalling and is required for mouse mesoderm development. Development 125(10): 1877-1887
Tanimoto, H., Itoh, S., ten Dijke, P. and Tabata, T. (2000). Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5: 59-71. 10678169
Tao, S., Cai, Y. and Sampath, K. (2009). The Integrator subunits function in hematopoiesis by modulating Smad/BMP signaling. Development 136(16): 2757-65. PubMed Citation: 19605500
Torres-Vazquez, J., et al. (2001). The transcription factor Schnurri plays a dual role in mediating Dpp signaling during embryogenesis. Development 128: 1657-1670. 11290303
Tremblay, K. D., Dunn, N. R. and Robertson, E. J. (2001). Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128: 3609-3621. 11566864
Tsuneizumi, K., et al. (1997). Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389(6651): 627-631
Tsurudome, K., Tsang, K., Liao, E. H., Ball, R., Penney, J., Yang, J. S., Elazzouzi, F., He, T., Chishti, A., Lnenicka, G., Lai, E. C. and Haghighi, A. P. (2010). The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron 68(5): 879-893. PubMed ID: 21145002
Udagawa, Y., et al. (2000). Schnurri interacts with Mad in a Dpp-dependent manner. Genes Cells 5(5): 359-69. 10886364
Ulloa, L., Doody, J. and Massague, J. (1999). Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397(6721): 710-3
Umulis, D. M., Shimmi, O., O'Connor, M. B. and Othmer, H. G. (2010). Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. Dev. Cell 18(2): 260-74. PubMed Citation: 20159596
Van Bortle, K., Peterson, A. J., Takenaka, N., O'Connor, M. B. and Corces, V. G. (2015). CTCF-dependent co-localization of canonical Smad signaling factors at architectural protein binding sites in D. melanogaster. Cell Cycle 14(16):2677-87. PubMed ID: 26125535
van Grunsven, L. A., et al. (2003). Interaction between Smad-interacting protein-1 and the corepressor C-terminal binding protein is dispensable for transcriptional repression of E-cadherin. J. Biol. Chem. 278(28): 26135-45. 12714599
Verschueren, K., et al. (1999). SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J. Biol. Chem. 274(29): 20489-98. 10400677
von Both, I., et al. (2004). Foxh1 is essential for development of the anterior heart field. Dev. Cell 7: 331-345. 15363409
Walsh, C. M. and Carroll, S. B. (2007). Collaboration between Smads and a Hox protein in target gene repression. Development 134(20): 3585-92. PubMed citation: 17855427
Waltzer, L. and Bienz, M. (1999). A function of CBP as a transcriptional co-activator during Dpp signalling. EMBO J. 18(6): 1630-1641. 10075933
Wan, M., et al. (2001). Transcriptional mechanisms of BMP-induced osteoprotegrin gene expression. J. Biol. Chem. 276: -/-. 11139569
Wang, X., Harris, R., Bayston, L. and Ashe, H. (2008). Type IV collagens regulate BMP signalling in Drosophila. Nature 455: 72-77. PubMed Citation: 18701888
Wartlick, O., et al. (2011). Dynamics of Dpp signaling and proliferation control. Science 331: 1154-1159. PubMed Citation: 21385708
Wharton, S. J., Basu, S. P. and Ashe, H. L. (2004). Smad affinity can direct distinct readouts of the embryonic extracellular Dpp gradient in Drosophila. Curr. Biol. 14: 1550-1558. 15341741
Weisberg, E., et al. (1998). A mouse homologue of FAST-1 transduces TGFbeta superfamily signals and is expressed during early embryogenesis. Mech. Dev. 79(1-2): 17-27. PubMed Citation: 10349617
Weiss, A., et al. (2010) A conserved activation element in BMP signaling during Drosophila development. Nat. Struct. Mol. Biol. 17(1): 69-76. PubMed Citation: 20010841
Wiersdorff, V., et al. (1996). Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122: 2153-62. PubMed Citation: 8681796
Wilson, P. A., et al. (1997). Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124(16): 3177-3184. PubMed Citation: 9272958
Wisotzkey, R. G., et al. (1998). Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. Development 125: 1433-1445. PubMed Citation: 9502724
Wotton, D., et al. (1999). A Smad transcriptional corepressor. Cell 97(1): 29-39. PubMed Citation: 10199400
Wu, G., et al. (2000). Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 287: 92-97. PubMed Citation: 10615055
Wu, J. W., et al. (2002). Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: Insights on Ski-mediated repression of TGF-ß signaling. Cell 111: 357-367. 12419246
Xiao, C., et al. (2003). Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis. Genes Dev. 17: 2933-2949. 14633973
Xia, L., et al. (2012). The niche-dependent feedback loop generates a BMP activity gradient to determine the germline stem cell fate. Curr. Biol. 22(6): 515-21. PubMed Citation: 22365848
Xie, T. and Spradling, A. C. (1998). decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94(2): 251-260
Xu, L., Yao, X., Chen, X., Lu, P., Zhang, B. and Ip, Y. T. (2007). Msk is required for nuclear import of TGF-β/BMP-activated Smads. J. Cell Biol. 178(6): 981-94. PubMed Citation: 17785517
Xu, M., Kirov, N. and Rushlow, C. (2005). Peak levels of BMP in the Drosophila embryo control target genes by a feed-forward mechanism. Development 132: 1637-1647. 15728670
Yamamoto, N., et al. (1997). Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem. Biophys. Res. Commun. 238(2): 574-80
Yanagisawa, J., et al. (1999). Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283(5406): 1317-21
Yingling, J. M., et al. (1997). Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Mol. Cell. Biol. 17(12): 7019-7028
Yoshida, Y., et al. (2000). Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103: 1085-1097
Yu, X., et al. (1998). Transcriptional repression due to high levels of Wingless signalling. EMBO J. 17: 7021-7032. 9835654
Zhang, Y., (1996). Receptor-associated MAD homologues synergize as effectors of the TGF-ß response. Nature 383: 168-172
Zhang, Y., Feng, X. H. and Derynck, R. (1998). Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394: 909-913
Zhao, G.-Q. and Hogan, B. L. M. (1997). Evidence that Mothers-against-dpp-related 1 (Madr1) plays a role in the initiation and maintenance of spermatogenesis in the mouse. Mech. Dev. 61: 63-73
Zeng, Y. A., Rahnama, M., Wang, S., Sosu-Sedzorme, W. and Verheyen, E. M. (2007). Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation. Development 134(11): 2061-2071. PubMed ID: 17507407
Zeng, Z., de Gorter, D. J., Kowalski, M., Ten Dijke, P. and Shimmi, O. (2014). Ter94/VCP is a novel component involved in BMP signaling. PLoS One 9: e114475. PubMed ID: 25469707
Zhu, C. H. and Xie, T. (2003). Clonal expansion of ovarian germline stem cells during niche formation in Drosophila. Development 130: 2579-2588. 12736203
Zhu, H., et al. (1999). A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400(6745): 687-93
Zuzarte-Luísa, V., et al. (2004). A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPK pathways. Dev. Bio. 272: 39-52. 15242789
date revised: 10 December 2021
Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.