CaM kinase II
Angers, A., Fioravante, D., Chin, J., Cleary, L. J., Bean, A. J. and Byrne, J. H. (2002). Serotonin stimulates phosphorylation of Aplysia synapsin and alters its subcellular distribution in sensory neurons. J Neurosci 22: 5412-5422. PubMed ID: 12097493
Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. and Kunes, S. (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124(1): 191-205. Medline abstract: 16413491
Bach, M. E., et al. (1995). Impairment of spatial but not contextual memory in CaM-KKK mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell 81: 905-915. PubMed Citation: 7781067
Barria, A., et al. (1997). Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276(5321): 2042-2045. PubMed Citation: 9197267
Bayer, K. U., Lohler, J., and Harbers, K. (1996). An alternative, nonkinase product of the brain-specifically expressed Ca2+/calmodulin-dependent kinase II alpha isoform gene in skeletal muscle. Mol. Cell. Biol. 16: 29-36. PubMed Citation: 8524307
Bayer, K., Harbers, K. and Schulman, H. (1998). alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J. 17(19): 5598-5605. PubMed Citation: 9755160
Bayer, K. U., De Koninck, P. and Schulman, H. (2002). Alternative splicing modulates the frequency-dependent response of CaMKII to Ca2+ oscillations. EMBO J. 21: 3590-3597. 12110572
Bemben, M. A., Shipman, S. L., Hirai, T., Herring, B. E., Li, Y., Badger, J. D., 2nd, Nicoll, R. A., Diamond, J. S. and Roche, K. W. (2014). CaMKII phosphorylation of neuroligin-1 regulates excitatory synapses. Nat Neurosci 17: 56-64. PubMed ID: 24336150
Bednarek, E. and Caroni, P. (2011). β-Adducin is required for stable assembly of new synapses and improved memory upon environmental enrichment. Neuron 69: 1132-1146. PubMed Citation: 21435558
Beumer, K., Matthies, H. J. G., Bradshaw, A. and Broadie, K. (2002). Integrins regulate DLG/FAS2 via a CaM kinase II-dependent pathway to mediate synapse elaboration and stabilization during postembryonic development. Development 129: 3381-3391. 12091308
Biederer, T., Kaeser, P. S. and Blanpied, T. A. (2017). Transcellular Nanoalignment of Synaptic Function. Neuron 96(3): 680-696. PubMed ID: 29096080
Bienkowski, R. S., Banerjee, A., Rounds, J. C., Rha, J., Omotade, O. F., Gross, C., Morris, K. J., Leung, S. W., Pak, C., Jones, S. K., Santoro, M. R., Warren, S. T., Zheng, J. Q., Bassell, G. J., Corbett, A. H. and Moberg, K. H. (2017). The conserved, disease-associated RNA binding protein dNab2 interacts with the Fragile X Protein ortholog in Drosophila neurons. Cell Rep 20(6): 1372-1384. PubMed ID: 28793261
Bildl, W., et al. (2004). Protein kinase CK2 is coassembled with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron 43: 847-858. 15363395
Blanquet, P. R. and Lamour, Y. (1997). Brain-derived neurotrophic factor increases Ca2+/Calmodulin-dependent protein kinase 2 activity in hippocampus. J. Biol. Chem. 272(39): 24133-24136. PubMed Citation: 9305859
Blitzer, R. D., et al. (1998). Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280(5371): 1940-1942. PubMed Citation: 9632393
Blystone, S. D., et al. (1999). A molecular mechanism of integrin crosstalk: alphavbeta3 suppression of Calcium/Calmodulin-dependent Protein Kinase II regulates alpha5beta1 function. J. Cell Biol. 145(4): 889-897. PubMed Citation: 10330414
Bogdanik, L., Mohrmann, R., Ramaekers, A., Bockaert, J., Grau, Y., Broadie, K. and Parmentier, M. L. (2004). The Drosophila metabotropic glutamate receptor DmGluRA regulates activity-dependent synaptic facilitation and fine synaptic morphology. J Neurosci 24(41): 9105-9116. PubMed ID: 15483129
Braun, A. P. and Schulman, H. (1995). The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol. 57: 417-445. PubMed Citation: 7778873
Brickey, D. A., et al. (1994). Mutational analysis of the autoinhibitory domain of calmodulin kinase II. J. Biol. Chem. 269: 29047-29054. PubMed Citation: 7961870
Broadie, K., et al. (1997). Leonardo, a Drosophila 14-3-3 protein involved in learning, regulates presynaptic function. Neuron 19(2): 391-402. PubMed Citation: 9292728
Brocke, L., Srinivasan, M. and Schulman, H. (1995). Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain. J. Neurosci. 15: 6797-6808. PubMed Citation: 7472438
Broughton, S. J., et al. (1996). Transport of CaM Kinase along processes elicited by neuronal contact evokes an inhibition of arborization and outgrowth in D. melanogaster cultured neurons. J. Cell. Biochem. 62: 484-494. PubMed Citation: 8891894
Bui, J. D., et al. (2000). A role for CaMKII in T cell memory. Cell 100: 457-467. PubMed Citation: 10693762
Byrne, J. H. and Kandel, E. R. (1996). Presynaptic facilitation revisited: state and time dependence. J Neurosci 16: 425-435. PubMed ID: 8551327
Cai, X., Gu, Z., Zhong, P., Ren, Y. and Yan, Z. (2002). Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons. J. Biol. Chem. 277(39): 36553-62. 12149253
Campusano, J. M., et al. (2007). nAChR-mediated calcium responses and plasticity in Drosophila Kenyon cells. Dev. Neurobiol. 67: 1520-1532. PubMed Citation: 17525989
Chapman, P. F., et al. (1995). The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. Neuron 14: 591-597. PubMed Citation: 7695905
Castro-Rodrigues, A. F., Zhao, Y., Fonseca, F., Gabant, G., Cadene, M., Robertson, G. A. and Morais-Cabral, J. H. (2018). The interaction between the Drosophila EAG potassium channel and the protein kinase CaMKII involves an extensive interface at the active site of the kinase. J Mol Biol. PubMed ID: 30381148
Chen, C., et al. (1994). Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science 266: 291-294. PubMed Citation: 7939668
Chen, H.-J., et al. (1998). A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM Kinase II. Neuron 895-904. PubMed Citation: 9620694
Chen, N., Zhang, Y., Adel, M., Kuklin, E. A., Reed, M. L., Mardovin, J. D., Bakthavachalu, B., VijayRaghavan, K., Ramaswami, M. and Griffith, L. C. (2022). Local translation provides the asymmetric distribution of CaMKII required for associative memory formation. Curr Biol 32(12): 2730-2738. PubMed ID: 35545085 BioArchives
Chen, X. and Dickman, D. (2017). Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations. PLoS Genet 13(12): e1007117. PubMed ID: 29194454
Chi, P., Greengard, P. and Ryan, T. A. (2003). Synaptic vesicle mobilization is regulated by distinct Synapsin I phosphorylation pathways at different frequencies. Neuron 38: 69-78. 12691665
Cho, K. O., et al. (1991). The alpha subunit of type II Ca2+/calmodulin-dependent protein kinase is highly conserved in Drosophila. Neuron 7: 439-50. PubMed Citation: 1910789
Cho, R. W., Buhl, L. K., Volfson, D., Tran, A., Li, F., Akbergenova, Y. and Littleton, J. T. (2015). Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity. Neuron 88(4): 749-761. PubMed ID: 26590346
Cho, Y. H., et al. (1998). Abnormal hippocampal spatial representations in alphaCaMKIIT286A and CREBalphaDelta- mice. Science 279(5352): 867-869. PubMed Citation: 9452387
Choi, B. J., Imlach, W. L., Jiao, W., Wolfram, V., Wu, Y., Grbic, M., Cela, C., Baines, R. A., Nitabach, M. N. and McCabe, B. D. (2014). Miniature neurotransmission regulates Drosophila synaptic structural maturation. Neuron 82(3): 618-634. PubMed ID: 24811381
Cole, S. H., et al. (2005). Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem. 280: 14948-14955. PubMed Citation: 15691831
Connolly, J. B., et al. (1996), Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274: 2104-2107. PubMed Citation: 8953046
Corrigan, C., Subramanian, R. and Miller, M. A.(2005). Eph and NMDA receptors control Ca2+/calmodulin-dependent protein kinase II activation during C. elegans oocyte meiotic maturation. Development 132(23): 5225-37. 16267094
Davis, G. W. and Muller, M. (2015). Homeostatic control of presynaptic neurotransmitter release. Annu Rev Physiol 77: 251-270. PubMed ID: 25386989
Das, S., et al. (1997). NMDA and D1 receptors regulate the phosphorylation of CREB and the induction of c-fos in striatal neurons in primary culture. Synapse 25(3): 227-233
Das, S., Sadanandappa, M. K., Dervan, A., Larkin, A., Lee, J. A., Sudhakaran, I. P., Priya, R., Heidari, R., Holohan, E. E., Pimentel, A., Gandhi, A., Ito, K., Sanyal, S., Wang, J. W., Rodrigues, V. and Ramaswami, M. (2011). Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci U S A 108: E646-654. PubMed ID: 21795607
Deisseroth, K., Bito, H. and Tsien, R. W. (1996). Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16: 89-101
De Koninck, P. and Schulman, H. (1998). Sensitivity of CaM Kinase II to the frequency of Ca2+ oscillations. Science 279(5348): 227-230
Dimitratos, S. D., Woods, D. F. and Bryant, P. J. (1997). Camguk, lin-2, and CASK: novel membrane-associated guanylate kinase homologs that also contain CaM kinase domains Mech. Dev. 63 (1): 127-130
Dittman, J. S., Kreitzer, A. C. and Regehr, W. G. (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20(4): 1374-1385. PubMed ID: 10662828
Guerrero, G., Reiff, D. F., Agarwal, G., Ball, R. W., Borst, A., Goodman, C. S. and Isacoff, E. Y. (2005). Heterogeneity in synaptic transmission along a Drosophila larval motor axon. Nat Neurosci 8(9): 1188-1196. PubMed ID: 16116446
Duch, C., Vonhoff, F. and Ryglewski, S. (2008). Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability. J Neurophysiol 100: 2525-2536. PubMed ID: 18715893
Elgersma, Y., et al. (2002). Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron 36: 493-505. 12408851
Erickson, J. R., et al. (2008). A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133: 462-474. PubMed Citation: 18455987
Fink, C. C., et al. (2003). Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39: 283-297. 12873385
Forrest, S., Chai, A., Sanhueza, M., Marescotti, M., Parry, K., Georgiev, A., Sahota, V., Mendez-Castro, R. and Pennetta, G. (2013). Increased levels of phosphoinositides cause neurodegeneration in a Drosophila model of amyotrophic lateral sclerosis. Hum Mol Genet 22: 2689-2704. PubMed ID: 23492670
Francescatto, L., Rothschild, S. C., Myers, A. L. and Tombes, R. M. (2010). The activation of membrane targeted CaMK-II in the zebrafish Kupffer's vesicle is required for left-right asymmetry. Development 137(16): 2753-62. PubMed Citation: 20630945
Frank, C. A., Kennedy, M. J., Goold, C. P., Marek, K. W. and Davis, G. W. (2006). Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52(4): 663-677. PubMed ID: 17114050
Frank, C. A., Pielage, J. and Davis, G. W. (2009). A presynaptic homeostatic signaling system composed of the Eph receptor, ephexin, Cdc42, and CaV2.1 calcium channels. Neuron 61(4): 556-569. PubMed ID: 19249276
Freeman, A., Bowers, M., Mortimer, A. V., Timmerman, C., Roux, S., Ramaswami, M. and Sanyal, S. (2010). A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Res 1326: 15-29. PubMed ID: 20193670
Frischknecht, R., Fejtova, A., Viesti, M., Stephan, A., Sonderegger, P. (2008). Activity-induced synaptic capture and exocytosis of the neuronal serine protease neurotrypsin. J. Neurosci. 28: 1568-1579. PubMed Citation: 18272678
Fukunaga, K., Muller, D. and Miyamoto, E. (1995). Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J. Biol. Chem. 270: 6119-24. PubMed Citation: 7890745
Gaffré, M., et al. (2011). A critical balance between Cyclin B synthesis and Myt1 activity controls meiosis entry in Xenopus oocytes. Development 138(17): 3735-44. PubMed Citation: 21795279
Garry, E. M., et al. (2003). Neuropathic sensitization of behavioral reflexes and spinal NMDA receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr. Biol. 13: 321-328. 12593798
Gaudillière, B., et al. (2004). A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41: 229-241. 14741104
Gavino, M. A., Ford, K. J., Archila, S. and Davis, G. W. (2015). Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance. Elife 4. PubMed ID: 25884248
Giachello, C. N., Fiumara, F., Giacomini, C., Corradi, A., Milanese, C., Ghirardi, M., Benfenati, F. and Montarolo, P. G. (2010). MAPK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity. J Cell Sci 123: 881-893. PubMed ID: 20159961
Giese, K. P., Fedorov, N. B., Filipkowski, R. K. and Silva, A. J. (1998). Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279: 870-873
Gillespie, J. M. and Hodge, J. J. (2013). CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning. Front. Mol. Neurosci. 6:27. PubMed ID: 24062638
Giovannini, M. G., et al. (2001). Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/Calmodulin-dependent protein kinase II in long-term potentiation. J. Neurosci. 21(18): 7053-7062. 11549715
Glazewski, S., et al. (1996). Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science 272: 421-423
Goel, P., Li, X. and Dickman, D. (2017). Disparate postsynaptic induction mechanisms ultimately converge to drive the retrograde enhancement of presynaptic efficacy. Cell Rep 21(9): 2339-2347. PubMed ID: 29186673
Griffith, L. C., et al. (1993a). Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron 10: 501-9
Griffith, L. C. and Greenspan, R. J. (1993b). The diversity of calcium/calmodulin-dependent protein kinase II isoforms in Drosophila is generated by alternative splicing of a single gene. J. Neurochem. 61: 1534-7
Griffith, L. C., et al. (1994). Calcium/calmodulin-dependent protein kinase II and potassium channel subunit eag similarly affect plasticity in Drosophila. Proc. Natl. Acad. Sci. 91: 10044-10048
Gruenbaum, L. M., et al. (2003). Identification and characterization of Aplysia adducin, an Aplysia cytoskeletal protein homologous to mammalian adducins: increased phosphorylation at a protein kinase C consensus site during long-term synaptic facilitation. J. Neurosci. 23: 2675-2685. PubMed Citation: 12684453
Guo, F., Yu, J., Jung, H. J., Abruzzi, K. C., Luo, W., Griffith, L. C. and Rosbash, M. (2016). Circadian neuron feedback controls the Drosophila sleep--activity profile. Nature 536(7616): 292-297. PubMed ID: 27479324
GuptaRoy, B. and Griffith, L. C. (1996a). Functional heterogeneity of alternatively spliced isoforms of Drosophila Ca2+/calmodulin-dependent protein kinase II. J. Neurochem. 66: 1282-1288
GuptaRoy, B., Beckingham, K., Griffith, L. C. (1996b). Functional diversity of alternatively spliced isoforms of Drosophila Ca2+/calmodulin-dependent protein kinase II. A role for the variable domain in activation. J. Biol. Chem. 271: 19846-19851
GuptaRoy, B., et al. (2000). Alternative splicing of Drosophila calcium/calmodulin-dependent protein kinase II regulates substrate specificity and activation. Brain Res. Mol. Brain Res. 80(1): 26-34. 11039726
Haghighi, A. P., et al. (2003). Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39: 255-267. 12873383
Hanson, P. I., et al. (1994). Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12: 943-56
Hardingham, N., et al. (2003). Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation. J. Neurosci. 23: 4428-4436. Medline abstract: 12805283
Harrisingh, M. C., Wu, Y., Lnenicka, G. A. and Nitabach, M. N. (2007). Intracellular Ca2+ regulates free-running circadian clock oscillation in vivo. J Neurosci 27(46): 12489-12499. PubMed ID: 18003827
Hartwig, C. L., Worrell, J., Levine, R. B., Ramaswami, M. and Sanyal, S. (2008). Normal dendrite growth in Drosophila motor neurons requires the AP-1 transcription factor. Dev Neurobiol 68: 1225-1242. PubMed ID: 18548486
Hayashi, Y., et al. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461): 2262-7.
Heckscher, E. S., Zarin, A. A., Faumont, S., Clark, M. Q., Manning, L., Fushiki, A., Schneider-Mizell, C. M., Fetter, R. D., Truman, J. W., Zwart, M. F., Landgraf, M., Cardona, A., Lockery, S. R. and Doe, C. Q. (2015). Even-Skipped(+) interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude. Neuron 88(2): 314-329. PubMed ID: 26439528
Herndon, L. A. and Wolfner, M. F. (1995). A Drosophila seminal fluid protein, Acp26Aa, stimulates egg laying in females for 1 day after mating. Proc. Natl. Acad. Sci. 92: 10114-10118. PubMed Citation: 7479736
Haghighi, A. P., McCabe, B. D., Fetter, R. D., Palmer, J. E., Hom, S. and Goodman, C. S. (2003). Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39(2): 255-267. PubMed ID: 12873383
Hillebrand, J., et al. (2010). The Me31B DEAD-box helicase localizes to postsynaptic foci and regulates expression of a CaMKII reporter mRNA in dendrites of Drosophila olfactory projection neurons. Front Neural Circuits 4: 121. PubMed Citation: 21267420
Hodge, J. J., Mullasseril, P. and Griffith, L. C. (2006). Activity-dependent gating of CaMKII autonomous activity by Drosophila CASK. Neuron 51(3): 327-37. Medline abstract: 16880127
Hoelz, A., Nairn, A. C. and Kuriyan, J. (2003). Crystal structure of a tetradecameric assembly of the association domain of Ca2+/Calmodulin-dependent kinase II. Molec. Cell 11: 1241-1251. 12769848
Horner, K., et al. (2003). Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Dev. Biol. 258: 385-396. 12798295
Horner, V. L., et al. (2006). The Drosophila calcipressin Sarah is required for several aspects of egg activation. Curr. Biol. 16(14): 1441-6. Medline abstract: 16860744
Hu, S. C., Chrivia, J. and Ghosh, A. (1999). Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron 22(4): 799-808
Inagaki, N., et al. (1997). Spatial patterns of Ca2+ signals define intracellular distribution of a signaling by Ca2+/Calmodulin-dependent protein kinase II. J. Biol. Chem. 272(40): 25195-25199
Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., Shibuya, H., Moon, R. T., Ninomiya-Tsuji, J. and Matsumoto, K. (2003). The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol. 23: 131-139. Medline abstract: 12482967
Jin, P., Griffith, L. C. and Murphey, R. K. (1998). Presynaptic calcium/calmodulin-dependent protein kinase II regulates habituation of a simple reflex in adult Drosophila. J. Neurosci. 18(21): 8955-64
Johnson, J., et al. (1998). Calcium/Calmodulin-Dependent protein kinase II and calmodulin: regulators of the meiotic spindle in mouse eggs. Dev. Biol. 204(2): 464-77
Johnston, H. M. and Morris, B. J. (1995). N-methyl-D-aspartate and nitric oxide regulate the expression of calcium/calmodulin-dependent kinase II in the hippocampal dentate gyrus. Brain Res. Mol. Brain Res. 31: 141-150
Joiner, M. l. A. and Griffith, L. C. (1997). CaM kinase II and visual input modulate memory formation in the neuronal circuit controlling courtship conditioning. J. Neurosci. 17(23): 9384-9391
Joiner, M.-l. A. 1 and Griffith, L. C. (1999). Mapping of the anatomical circuit of CaM kinase-dependent courtship conditioning in Drosophila Learn. Mem. 6: 177-192
Joiner, M. A. and Griffith, L. C. (2000). Visual input regulates circuit configuration in courtship conditioning of Drosophila melanogaster. Learn Mem. 7(1): 32-42
Joiner, M.-l. A. 1 and Griffith, L. C. (1999). Mapping of the anatomical circuit of CaM kinase-dependent courtship conditioning in Drosophila Learn. Mem. 6: 177-192
Ju, B. G., et al. (2004). Activating the PARP-1 sensor component of the Groucho/ TLE1 corepressor complex mediates a CaMKinase II-dependent neurogenic gene activation pathway. Cell 119: 815-829. 15607978
Kadas, D., Tzortzopoulos, A., Skoulakis, E. M. and Consoulas, C. (2012). Constitutive activation of Ca2+/calmodulin-dependent protein kinase II during development impairs central cholinergic transmission in a circuit underlying escape behavior in Drosophila. J. Neurosci. 32(1): 170-82. PubMed Citation: 22219280
Kahn, E. S. and Matsumoto, H. (1997). Calcium/calmodulin-dependent kinase II phosphorylates Drosophila visual arrestin. J. Neurochem. 68(1): 169-175
Kauwe, G., Tsurudome, K., Penney, J., Mori, M., Gray, L., Calderon, M. R., Elazouzzi, F., Chicoine, N., Sonenberg, N. and Haghighi, A. P. (2016). Acute fasting regulates retrograde synaptic enhancement through a 4E-BP-dependent mechanism. Neuron 92(6): 1204-1212. PubMed ID: 27916456
Kazama, H., Morimoto-Tanifuji, T., and Nose, A. (2003). Postsynaptic activation of calcium/calmodulin-dependent protein kinase II promotes coordinated pre- and postsynaptic maturation of Drosophila neuromuscular junctions. Neuroscience 117: 615-625. 12617966
Khuong, T. M., Habets, R. L., Slabbaert, J. R. and Verstreken, P. (2010). WASP is activated by phosphatidylinositol-4,5-bisphosphate to restrict synapse growth in a pathway parallel to bone morphogenetic protein signaling. Proc Natl Acad Sci U S A 107: 17379-17384. PubMed ID: 20844206
Knapek, S., Gerber, B. and Tanimoto, H. (2010). Synapsin is selectively required for anesthesia-sensitive memory. Learn Mem. 17(2): 76-9. PubMed ID: 20154352
Koh, Y. H., Popova, E., Thomas, U., Griffith, L. C. and Budnik, V. (1999). Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation. Cell 98: 353-363. 10458610
Kon, N., Yoshikawa, T., Honma, S., Yamagata, Y., Yoshitane, H., Shimizu, K., Sugiyama, Y., Hara, C., Kameshita, I., Honma, K. and Fukada, Y. (2014). CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms. Genes Dev 28: 1101-1110. PubMed ID: 24831701
Kon, N., Wang, H. T., Kato, Y. S., Uemoto, K., Kawamoto, N., Kawasaki, K., Enoki, R., Kurosawa, G., Nakane, T., Sugiyama, Y., Tagashira, H., Endo, M., Iwasaki, H., Iwamoto, T., Kume, K. and Fukada, Y. (2021). Na(+)/Ca(2+) exchanger mediates cold Ca(2+) signaling conserved for temperature-compensated circadian rhythms. Sci Adv 7(18). PubMed ID: 33931447
Krapivinsky, G., Medina, I., Krapivinsky, L., Gapon, S. and Clapham, D. E. (2004). SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43(4): 563-74. 15312654
Krebs, J., Means, R. L. and Honegger, P. (1996). Induction of calmodulin kinase IV by the thyroid hormone during the development of rat brain. J. Biol. Chem. 271: 11055-11058
Kristaponyte, I., Hong, Y., Lu, H. and Shieh, B. H. (2012). Role of rhodopsin and arrestin phosphorylation in retinal degeneration of Drosophila. J Neurosci 32: 10758-10766. PubMed ID: 22855823
Krueger, K. A., et al. (1997). Calcium-stimulated phosphorylation of MAP-2 in pancreatic betaTC3-cells is mediated by Ca2+/calmodulin-dependent kinase II. J. Biol. Chem. 272(43): 27464-27469
Kuhl, M., et al. (2000). Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275: 12701-11.
Kuhl, M., et al. (2001). Antagonistic regulation of convergent extension movements in Xenopus by Wnt/ß-catenin and Wnt/Ca2+ signaling. Mech. Dev. 106: 61-76. 11472835
Kuklin, E. A., Alkins, S., Bakthavachalu, B., Genco, M. C., Sudhakaran, I., Raghavan, K. V., Ramaswami, M. and Griffith, L. C. (2017). The long 3'UTR mRNA of CaMKII is essential for translation-dependent plasticity of spontaneous release in Drosophila melanogaster. J Neurosci [Epub ahead of print]. PubMed ID: 28954869
Kurdyak, P., Atwood, H. L., Stewart, B. A. and Wu, C. F. (1994). Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. J Comp Neurol 350(3): 463-472. PubMed ID: 7884051
Lee, H.-K., et al. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405: 955-959
Lee, H. G., Seong, C. S., Kim, Y. C., Davis, R. L. and Han, K. A. (2003). Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster. Dev. Biol. 264: 179-190. PubMed Citation: 14623240
Lee, H. G., Rohila, S. and Han, K. A. (2009). The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium. PLoS One 4(3): e4716. PubMed Citation: 19262750
Leinders-Zufall, T., Ma. M. and Zufall, F. (1999). Impaired odor adaptation in olfactory receptor neurons after inhibition of Ca2+/Calmodulin kinase II. J. Neurosci. 19: RC19:1-6. PubMed Citation: 10407061
Li, J., Dang, P., Li, Z., Zhao, T., Cheng, D., Pan, D., Yuan, Y., Song, W. (2023). Peroxisomal ERK mediates Akh/glucagon action and glycemic control. Cell Rep, 42(10):113200 PubMed ID: 37796662
Li, X., Goel, P., Chen, C., Angajala, V., Chen, X. and Dickman, D. K. (2018a). Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation. Elife 7. PubMed ID: 29620520
Li, X., Goel, P., Wondolowski, J., Paluch, J. and Dickman, D. (2018b). A glutamate homeostat controls the presynaptic inhibition of neurotransmitter release. Cell Rep 23(6): 1716-1727. PubMed ID: 29742428
Lim, J., Sabandal, P. R., Fernandez, A., Sabandal, J. M., Lee, H. G., Evans, P. and Han, K. A. (2014). The Octopamine receptor Octβ2R regulates ovulation in Drosophila melanogaster. PLoS One 9: e104441. PubMed ID: 25099506
Lin, C. C.-J., Summerville, J. B., Howlett, E. and Stern, M. (2011). The metabotropic glutamate receptor activates the lipid kinase PI3K in Drosophila motor neurons through the calcium/calmodulin-dependent protein kinase II and the nonreceptor tyrosine protein kinase DFak. Genetics 188(3): 601-13. PubMed Citation: 21515581
Lin, M. Z. and Schnitzer, M. J. (2016). Genetically encoded indicators of neuronal activity. Nat Neurosci 19(9): 1142-1153. PubMed ID: 27571193
Lledo, P. M., et al. (1995). Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. 92: 11175-11179. PubMed Citation: 7479960
Lnenicka, G. A. and Keshishian, H. (2000). Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J Neurobiol 43(2): 186-197. PubMed ID: 10770847
Long, X. and Griffith, L. C. (2000). Identification and characterization of a SUMO-1 conjugation system that modifies neuronal calcium/calmodulindependent protein kinase II in Drosophila melanogaster. J. Biol. Chem. 275: 40765-40776. 10995744
Lu, C. S., et al. (2003). Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation. Neuron 40: 1185-1197. 8602221
Lu, Y., Lu, Y. S., Shuai, Y., Feng, C., Tully, T., Xie, Z., Zhong, Y. and Zhou, H. M. (2007). The AKAP Yu is required for olfactory long-term memory formation in Drosophila. Proc Natl Acad Sci U S A 104: 13792-13797. PubMed ID: 17690248
Lu, Z., Chouhan, A. K., Borycz, J. A., Lu, Z., Rossano, A. J., Brain, K. L., Zhou, Y., Meinertzhagen, I. A. and Macleod, G. T. (2016). High-Probability Neurotransmitter Release Sites Represent an Energy-Efficient Design. Curr Biol 26(19): 2562-2571. PubMed ID: 27593375
Ma, H., Groth, R. D., Cohen, S. M., Emery, J. F., Li, B., Hoedt, E., Zhang, G., Neubert, T. A. and Tsien, R. W. (2014). γCaMKII shuttles Ca(2+)/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159: 281-294. PubMed ID: 25303525
Maga, G., et al. (1997). Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Ca2+/calmodulin-dependent protein kinase II inhibits DNA synthesis. Biochemistry 36(18): 5300-5310
Makhinson, M., et al. (1999). Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/Calmodulin-dependent Kinase II autophosphorylation. J. Neurosci. 19(7): 2500-2510. PubMed ID: 10087064
Mapelli, L., Pagani, M., Garrido, J. A. and D'Angelo, E. (2015). Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci 9: 169. PubMed ID: 25999817
Margrie, T. W., Rostas, J. A. P. and Sah, P. (1998). Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII. Nature Neurosci. 1(5): 378-383
Markoulaki, S., et al. (2003). Oscillatory CaMKII activity in mouse egg activation. Dev. Biol. 258: 464-474. 12798302
Matthews, R. P., et al. (1994). Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol. Cell. Biol. 14: 6107-6116
Maune, J. F., Klee, C. B. and Beckingham, K. (1992). Ca2+ binding and conformational change in two series of point mutations to the individual Ca2+-binding sites of Calmodulin. J. Biol. Chem. 267: 5286-95
Mayer, P., et al. (1995). Novel and uncommon isoforms of the calcium sensing enzyme calcium/calmodulin dependent protein kinase II in heart tissue. Basic Res. Cardiol. 90: 372-379
Mayford, M., et al. (1995). CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81: 891-904
McGlade-McCulloh, E., et al. (1993). Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 362:640-642
Mehren, J. E. and Griffith, L. C. (2004). Calcium-independent calcium/calmodulin-dependent protein kinase II in the adult Drosophila CNS enhances the training of pheromonal cues. J. Neurosci. 24: 10584-10593. Medline abstract: 15564574
Melom, J. E., Akbergenova, Y., Gavornik, J. P. and Littleton, J. T. (2013). Spontaneous and evoked release are independently regulated at individual active zones. J Neurosci 33(44): 17253-17263. PubMed ID: 24174659
Michels, B., et al. (2011). Cellular site and molecular mode of synapsin action in associative learning. Learn Mem. 18(5): 332-44. PubMed ID: 21518740
Middleton, C. A., et al. (2006). Neuromuscular organization and aminergic modulation of contractions in the Drosophila ovary. BMC Biol. 4: 17. PubMed Citation: 16768790
Miller, S., et al. (2002). Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36: 507-519. 12408852
Milovanovic, D., Wu, Y., Bian, X. and De Camilli, P. (2018). A liquid phase of synapsin and lipid vesicles. Science 361(6402): 604-607. PubMed ID: 29976799
Mitchell, J., Smith, C. S., Titlow, J., Otto, N., van Velde, P., Booth, M., Davis, I. and Waddell, S. (2021). Selective dendritic localization of mRNA in Drosophila mushroom body output neurons. Elife 10. PubMed ID: 33724180
Monastirioti, M., et al. (1995). Octopamine immunoreactivity in the fruit fly Drosophila melanogaster. J. Comp. Neurol. 356: 275-287. PubMed Citation: 7629319
Morris, T. A., DeLorenzo, R. J. and Tombes, R. M. (1998). CaMK-II inhibition reduces cyclin D1 levels and enhances the association of p27kip1 with Cdk2 to cause G1 arrest in NIH 3T3 cells. Exp. Cell Res. 240(2): 218-227
Muhammad, K., Reddy-Alla, S., Driller, J. H., Schreiner, D., Rey, U., Bohme, M. A., Hollmann, C., Ramesh, N., Depner, H., Lutzkendorf, J., Matkovic, T., Gotz, T., Bergeron, D. D., Schmoranzer, J., Goettfert, F., Holt, M., Wahl, M. C., Hell, S. W., Scheiffele, P., Walter, A. M., Loll, B. and Sigrist, S. J. (2015). Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function. Nat Commun 6: 8362. PubMed ID: 26471740
Murphy, T. H., et al. (1994). Differential regulation of calcium/calmodulin-dependent protein kinase II and p42 MAP kinase activity by synaptic transmission. J. Neurosci. 14: 1320-3
Nayak, A. S., Moore, C. I. and Browning, M. D. (1996). Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation. Proc. Natl. Acad. Sci. 93: 15451-56
Naydenov, N. G. and Ivanov, A. I. (2010). Adducins regulate remodeling of apical junctions in human epithelial cells. Mol. Biol. Cell 21: 3506-3517. PubMed Citation: 20810786
Nelson, A. B., Gittis, A. H. and du Lac, S. (2005). Decreases in CaMKII activity trigger persistent potentiation of intrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron 46: 623-631. 15944130
Nesler, K. R., et al. (2013). The miRNA pathway controls rapid changes in activity-dependent synaptic structure at the Drosophila melanogaster neuromuscular junction. PLoS One 8(7):e68385. PubMed ID: 23844193
Nesler, K. R., Starke, E. L., Boin, N. G., Ritz, M. and Barbee, S. A. (2016). Presynaptic CamKII regulates activity-dependent axon terminal growth. Mol Cell Neurosci 76: 33-41. PubMed ID: 27567686
Newman, Z. L., Hoagland, A., Aghi, K., Worden, K., Levy, S. L., Son, J. H., Lee, L. P. and Isacoff, E. Y. (2017). Input-specific plasticity and homeostasis at the Drosophila larval neuromuscular junction. Neuron 93(6):1388-1404. PubMed ID: 28285823
Ninan, I. and Arancio, O. (2004). Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons. Neuron 42: 129-141. 15066270
Ohler, S., Hakeda-Suzuki, S. and Suzuki, T. (2011). Hts, the Drosophila homologue of Adducin, physically interacts with the transmembrane receptor Golden goal to guide photoreceptor axons. Dev. Dyn. 240: 135-148. PubMed Citation: 21128303
Ohno, M., Frankland, P. W. and Silva, A. J. (2002). A pharmacogenetic inducible approach to the study of NMDA/alphaCaMKII signaling in synaptic plasticity. Curr Biol. 12(8): 654-6. 11967152
Ohsako, S., et al. (1993). Molecular characterization and expression of the Drosophila Ca2+/calmodulin-dependent protein kinase II gene. Identification of four forms of the enzyme generated from a single gene by alternative splicing. J. Biol. Chem. 268: 2052-62
Paradis, S., Sweeney, S. T., and Davis, G. W. (2001). Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30: 737-749. 11430807
Peled, E. S. and Isacoff, E. Y. (2011). Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons. Nat Neurosci 14(4): 519-526. PubMed ID: 21378971
Peled, E. S., Newman, Z. L. and Isacoff, E. Y. (2014). Evoked and spontaneous transmission favored by distinct sets of synapses. Curr Biol 24(5): 484-493. PubMed ID: 24560571
Penney, J., Tsurudome, K., Liao, E. H., Elazzouzi, F., Livingstone, M., Gonzalez, M., Sonenberg, N. and Haghighi, A. P. (2012). TOR is required for the retrograde regulation of synaptic homeostasis at the Drosophila neuromuscular junction. Neuron 74: 166-178. PubMed ID: 22500638
Peretz, A., et al. (1998). A Ca2+/Calmodulin-dependent protein kinase modulates Drosophila photoreceptor K+ currents: A role in shaping the photoreceptor potential. J. Neurosci. 18(22): 9153-62
Pettit, D. L., Perlman, S. and Malinow, R. (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266: 1881-1885. PubMed Citation: 7997883
Pielage, J., et al. (2011). Hts/Adducin controls synaptic elaboration and elimination. Neuron 69: 1114-1131. PubMed Citation: 21435557
Porro, F., et al. (2010). β-adducin (Add2) KO mice show synaptic plasticity, motor coordination and behavioral deficits accompanied by changes in the expression and phosphorylation levels of the α- and γ-adducin subunits. Genes Brain Behav. 9: 84-96. PubMed Citation: 19900187
Pratt, K. G., et al. (2003). Activity-dependent remodeling of presynaptic inputs by postsynaptic expression of activated CaMKII. Neuron 39: 269-281. 12873384
Rasmussen, G. and Rasmussen, C. (1995). Calmodulin-dependent protein kinase II is required for G1/S progression in HeLa cells. Biochem. Cell Biol. 73: 201-207. PubMed Citation: 7576494
Rabenstein, R. L., et al. (2005). Impaired synaptic plasticity and learning in mice lacking β-adducin, an actin-regulating protein. J. Neurosci. 25: 2138-2145. PubMed Citation: 15728854
Reese, A. L. and Kavalali, E. T. (2015). Spontaneous neurotransmission signals through store-driven Ca(2+) transients to maintain synaptic homeostasis. Elife 4:e09262. PubMed ID: 26208337
Reiff, D. F., Thiel, P. R. and Schuster, C. M. (2002). Differential regulation of active zone density during long-term strengthening of Drosophila neuromuscular junctions. J. Neurosci. 22: 9399-9409. 12417665
Rodriguez-Valentin, R., et al. (2006). Oviduct contraction in Drosophila is modulated by a neural network that is both, octopaminergic and glutamatergic. J. Cell/ Physiol. 209: 183-198. PubMed Citation: 16826564
Rotenberg, R., et al. (1996). Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus Cell 87: 1351-61. PubMed Citation: 8980240
Rothschild, S. C., Francescatto, L., Drummond, I. A. and Tombes, R. M. (2011). CaMK-II is a PKD2 target that promotes pronephric kidney development and stabilizes cilia. Development 138(16): 3387-97. PubMed Citation: 21752935
Ruediger, S. et al. (2011). Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473: 514-518. PubMed Citation: 21532590
Sadanandappa, M. K., Redondo, B. B., Michels, B., Rodrigues, V., Gerber, B., Vijayraghavan, K., Buchner, E. and Ramaswami, M. (2013). Synapsin function in GABA-ergic interneurons is required for short-term olfactory habituation. J Neurosci 33: 16576-16585. PubMed ID: 24133261
Sagasti, A., et al. (2001). The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 105: 221-232. 11336672
Schaefer, J. E., Worrell, J. W. and Levine, R. B. (2010). Role of intrinsic properties in Drosophila motoneuron recruitment during fictive crawling. J Neurophysiol 104(3): 1257-1266. PubMed ID: 20573969
Schulman, H., Heist, K. and Srinivasan, M. (1995). Decoding Ca2+ signals to the nucleus by multifunctional CaM kinase. Prog. Brain Res. 105: 95-104. PubMed Citation: 7568901
Shifman, J. M., et al. (2006). Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl. Acad. Sci. 103(38): 13968-73. Medline abstract: 16966599
Shakiryanova, D., et al. (2005). Activity-dependent liberation of synaptic neuropeptide vesicles. Nat. Neurosci. 8: 173-178. PubMed Citation: 15643430
Shakiryanova, D., Tully, A. and Levitan, E. S. (2006). Activity-dependent synaptic capture of transiting peptidergic vesicles. Nat. Neurosci. 9: 896-900. PubMed Citation: 16767091
Shakiryanova, D., et al. (2007). Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. J. Neurosci. 27(29): 7799-806. PubMed Citation: 17634373
Shakiryanova, D., et al. (2011). Differential control of presynaptic CaMKII activation and translocation to active zones. J. Neurosci. 31(25): 9093-100. PubMed Citation: 21697360
Shen K., et al. (1998). CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron 21(3): 593-606
Shen, K. and Meyer, T. (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284(5411): 162-6
Siegel, F. and Lohmann, C. (2013). Probing synaptic function in dendrites with calcium imaging. Exp Neurol 242: 27-32. PubMed ID: 22374356
Singh, T. D., et al. (2005). Song tutoring triggers CaMKII phosphorylation within a specialized portion of the avian basal ganglia. J. Neurobiol. 65: 179-191. Medline abstract: 16114029
Soderling, T. R. (1993). Calcium/calmodulin-dependent protein kinase II: role in learning and memory. Mol Cell Biochem 127-128: 93-101
Solem, M., McMahon, T. and Messing, R. O. (1995). Depolarization-induced neurite outgrowth in PC12 cells requires permissive, low level NGF receptor stimulation and activation of calcium/calmodulin-dependent protein kinase. J. Neurosci. 15: 5966-5975
Speese, S. D., Ashley, J., Jokhi, V., Nunnari, J., Barria, R., Li, Y., Ataman, B., Koon, A., Chang, Y. T., Li, Q., Moore, M. J. and Budnik, V. (2012). Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149: 832-846. PubMed ID: 22579286
Spring, A. M., Brusich, D. J. and Frank, C. A. (2016). C-terminal Src kinase gates homeostatic synaptic plasticity and regulates fasciclin II expression at the Drosophila neuromuscular junction. PLoS Genet 12(2): e1005886. PubMed ID: 26901416
Squire, L. R. (1992). Memory and the hippocampus: a synthesis fom finding with rats, moneys, and humans. Psychological Review 99: 195-231
Srinivasan, M., Edman, C. F. and Schulman, H. (1994). Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J. Cell Biol. 126, 839-852
Strack, S., et al. (1997). Translocation of autophosphorylated Calcium/Calmodulin-dependent protein kinase II to the postsynaptic density. J. Biol. Chem. 272 (21): 13467-13470
Stratton, M., Lee, I. H., Bhattacharyya, M., Christensen, S. M., Chao, L. H., Schulman, H., Groves, J. T. and Kuriyan, J. (2013). Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. Elife 3: e01610. PubMed ID: 24473075
Sudhakaran, I. P., Hillebrand, J., Dervan, A., Das, S., Holohan, E. E., Hulsmeier, J., Sarov, M., Parker, R., Vijayraghavan, K. and Ramaswami, M. (2013). FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control. Proc Natl Acad Sci U S A. PubMed ID: 24344294
Sun, P., et al. (1994). Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8: 2527-39
Sytnyk, V., et al. (2007). NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex. J. Cell Biol. 174: 1071-1085. Medline abstract: 17000882
Takamatsu, Y, et al. (1994). Identification of an alternative form of the Drosophila Ca2+/calmodulin-dependent protein kinase II that is maternally derived. Biochim. Biophys. Acta 1220: 188-92
Takamatsu, Y., Kishimoto, Y. and Ohsako, S. (2003). Immunohistochemical study of Ca2+/calmodulin-dependent protein kinase II in the Drosophila brain using a specific monoclonal antibody. Brain Res. 974: 99-116. Medline abstract: 12742628
Takeo, S., Tsuda, M., Akahori, S., Matsuo, T. and Aigaki, T. (2006). The calcineurin regulator Sra plays an essential role in female meiosis in Drosophila. Curr. Biol. 16(14): 1435-40. Medline abstract: 16860743
Tang, A. H., Chen, H., Li, T. P., Metzbower, S. R., MacGillavry, H. D. and Blanpied, T. A. (2016). A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536(7615): 210-214. PubMed ID: 27462810
Tashima, K., et al. (1996). Overexpression of Ca2+/calmodulin-dependent protein kinase II inhibits neurite outgrowth of PC12 cells. J. Neurochem. 66: 57-64
Thiagarajan, T. C. Piedras-Renteria, E. S. and Tsien, R. W. (2002). alpha- and ßCaMKII: Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36: 1103-1114. 12495625
Thornquist, S. C., Langer, K., Zhang, S. X., Rogulja, D. and Crickmore, M. A. (2020). CaMKII measures the passage of time to coordinate behavior and motivational state. Neuron 105(2): 334-345. PubMed ID: 31786014
Thornquist, S. C., Pitsch, M. J., Auth, C. S. and Crickmore, M. A. (2021). Biochemical evidence accumulates across neurons to drive a network-level eruption. Mol Cell. PubMed ID: 33453167
Tighilet, B., Hashikawa, T. and Jones, E. G. (1998). Cell- and lamina-specific expression and activity-dependent regulation of type II calcium/calmodulin-dependent protein kinase isoforms in monkey visual cortex. J. Neurosci. 18(6): 2129-2146
Tokumitsu H., and Soderling, T. R. (1996). Requirements for calcium and calmodulin in the calmodulin kinase activation cascade. J. Biol. Chem. 271: 5617-5622
Tsurudome, K., Tsang, K., Liao, E. H., Ball, R., Penney, J., Yang, J. S., Elazzouzi, F., He, T., Chishti, A., Lnenicka, G., Lai, E. C. and Haghighi, A. P. (2010). The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron 68(5): 879-893. PubMed ID: 21145002
Tulin, A., Stewart, D. and Spradling, A. C. (2002). The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev. 16(16): 2108-19. 12183365
Tulin, A. and Spradling, A. (2003). Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299: 560-562. 12543974
van Woerden, G. M., et al. (2007), Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nature Neurosci. 10: 280-282. Medline abstract: 17259980
Vonhoff, F., Kuehn, C., Blumenstock, S., Sanyal, S. and Duch, C. (2013). Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development. Development 140: 606-616. PubMed ID: 23293292
Walkup, W. G., Mastro, T. L., Schenker, L. T., Vielmetter, J., Hu, R., Iancu, A., Reghunathan, M., Bannon, B. D. and Kennedy, M. B. (2016). A model for regulation by SynGAP-alpha1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density. Elife 5 [Epub ahead of print]. PubMed ID: 27623146
Wan, H. I., DiAntonio, A., Fetter, R. D., Bergstrom, K., Strauss, R., and Goodman, C. S. (2000). Highwire regulates synaptic growth in Drosophila. Neuron 26: 313-329. 10839352
Wang, H., et al. (2003). Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc. Natl. Acad. Sci. 100: 4287-4292. PubMed Citation: 12646704
Wang, J., et al., (1994). Concomitant alterations of physiological and developmental plasticity in Drosophila CaM kinase II-inhibited synapses. Neuron 13: 1373-84
Wang J. H. and Kelly, P. T. (1995). Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 15: 443-452
Wang, S., et al. (2011). Drosophila adducin regulates Dlg phosphorylation and targeting of Dlg to the synapse and epithelial membrane. Dev. Biol. 357(2): 392-403. PubMed Citation: 21791202
Wang, S. J., Tsai, A., Wang, M., Yoo, S., Kim, H. Y., Yoo, B., Chui, V., Kisiel, M., Stewart, B., Parkhouse, W., Harden, N. and Krieger, C. (2014). Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction. Biol Open 3(12): 1196-206. PubMed ID: 25416060
Wang, Y. X. and Kotlikoff, M. I. (1997). Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. 94(26): 14918-14923
Watt, W. C., et al. (2004). Odorant stimulation enhances survival of olfactory sensory neurons via MAPK and CREB. Neuron 41: 955-967. 15046727
Wayman, G. A., Tokumitsu, H. and Soderling, T. R. (1997). Inhibitory Cross-talk by cAMP Kinase on the Calmodulin-dependent Protein Kinase Cascade. J. Biol. Chem. 272 (26): 16073-16076
Wei, J., et al. (1998). Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in neurons: a mechanism for attenuation of olfactory signals. Neuron 21(3): 495-504.
Wen, Z., et al. (2004). A CaMKII/Calcineurin switch controls the direction of Ca2+-dependent growth cone guidance. Neuron 43: 835-846. 15363394
Weyhersmuller, A., Hallermann, S., Wagner, N. and Eilers, J. (2011). Rapid active zone remodeling during synaptic plasticity. J Neurosci 31(16): 6041-6052. PubMed ID: 21508229
Wong, M. Y., Shakiryanova, D. and Levitan E. S. (2009). Presynaptic ryanodine receptor-CamKII signaling is required for activity-dependent capture of transiting vesicles. J. Mol. Neurosci. 37(2): 146-50. PubMed Citation: 18592416
Wu, G. Y. and Cline, H. T. (1998). Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279(5348): 222-226
Yakel, J. L., et al. (1995). Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors. Proc. Natl. Acad. Sci. 92: 1376-1380
Yasuda, M. and Mayford, M. R. (2006). CaMKII activation in the entorhinal cortex disrupts previously encoded spatial memory. Neuron 50: 309-318. 16630840
Yoshimura, Y. and Yamauchi, T. (1997). Phosphorylation-dependent reversible association of Ca2+/Calmodulin-dependent protein kinase II with the postsynaptic densities. J. Biol. Chem. 272(42): 26354-26359
Zhang, W., et al. (1999). Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J. Neurosci. 19(1): 96-108
Zhao, J., Lu, Y., Zhao, X., Yao, X., Shuai, Y., Huang, C., Wang, L., Jeong, S. H. and Zhong, Y. (2013). Dissociation of rugose-dependent short-term memory component from memory consolidation in Drosophila. Genes Brain Behav 12: 626-632. PubMed ID: 23790035
Zhou, Y., et al. (1999). A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 22(4): 809-18
Zwart, M. F., Pulver, S. R., Truman, J. W., Fushiki, A., Fetter, R. D., Cardona, A. and Landgraf, M. (2016). Selective inhibition mediates the sequential recruitment of motor pools. Neuron 91(3): 615-628. PubMed ID: 27427461
date revised: 17 August 2021Home page: The Interactive Fly © 1995, 1996 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.