araucan and caupolican
Aldaz, S., Morata, G. and Azpiazu, N. (2003). The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development 130: 4473-4482. 12900462
Ayala-Camargo, A., Anderson, A. M., Amoyel, M., Rodrigues, A. B., Flaherty, M. S. and Bach, E. A. (2013). JAK/STAT signaling is required for hinge growth and patterning in the Drosophila wing disc. Dev Biol. PubMed ID: 23978534
Bao, Z. Z., Bruneau, B. G,, Seidman, J. G., Seidman, C. E. and Cepko, C. L. (1999). Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283(5405): 1161-4
Becker, M.-B., et al. (2001). Irx1 and Irx2 expression in early lung development. Mech. Dev. 106: 155-158. 11472847
Barrios, N., Gonzalez-Perez, E., Hernandez, R. and Campuzano, S. (2015). The homeodomain Iroquois proteins control cell cycle progression and regulate the size of developmental fields. PLoS Genet 11: e1005463. PubMed ID: 26305360
Bellefroid, E. J., et al. (1998). Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J. 17: 191-203. PubMed Citation: 9427753
Bilioni, A., Craig, G., Hill, C. and McNeill, H. (2005). Iroquois transcription factors recognize a unique motif to mediate transcriptional repression in vivo. Proc. Natl. Acad. Sci. 102(41): 14671-6. PubMed Citation: 16203991
Bosse, A., et al. (1997). Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech. Dev. 69(1-2): 169-181. PubMed Citation: 9486539
Braun, M. M., et al. (2003). Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 130: 5579-5587. 14522868
Briscoe, J., et al. (2000). A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101: 435-445. PubMed Citation: 10830170
Bruneau, B. G., et al. (2000). Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand. Dev. Biol. 217: 266-277. PubMed Citation: 10625552
Burglin, T. R. (1999). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25(21): 4173-80. PubMed Citation: 9336443
Calleja, M., et al. (2000). Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. Development 127: 3971-3980. PubMed Citation: 10952895
Carrasco-Rando, M., et al. (2011). Drosophila araucan and caupolican integrate intrinsic and signalling inputs for the acquisition by muscle progenitors of the lateral transverse fate. PLoS Genet. 7(7): e1002186. PubMed Citation: 21811416
Cavodeassi, F., et al. (1999). Compartments and organizing boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126: 4933-4942. PubMed Citation: 10529412
Cavodeassi, F., Modolell, J. and Campuzano, S. (2000). The Iroquois homeobox genes function as dorsal selectors in the Drosophila head. Development 127: 1921-1929. PubMed Citation: 10751180
Cavodeassi, F., Rodriguez, I. and Modolell, J. (2002). Dpp signalling is a key effector of the wing-body wall subdivision of the Drosophila mesothorax. Development 129: 3815-3823. 12135920
Cheng, C. W., et al. (2005). The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Dev. Biol. 287(1): 48-60. 16182275
Cheng, C. W., et al. (2006). The homeobox gene irx1a is required for the propagation of the neurogenic waves in the zebrafish retina. Mech. Dev. [Epub ahead of print]. 16457994
Christoffels, V. M., et al. (2000). Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Dev. Biol. 224: 263-274. PubMed Citation: 10926765
de Celis, J. F. and Barrio, R. (2000). Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mech. Dev. 91: 31-41. PubMed Citation: 10704828
de la Calle-Mustienes, E., et al. (2002). Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma. Mech. Dev. 119: 69-80. 12385755
de Navascues, J. and Modolell, J. (2007). tailup, a LIM-HD gene, and Iro-C cooperate in Drosophila dorsal mesothorax specification. Development 134(9): 1779-88. Medline abstract: 17409113
Deng, H., Bell, J. B. and Simmonds, A. J. (2010). Vestigial is required during late-stage muscle differentiation in Drosophila melanogaster embryos. Mol. Biol. Cell 21: 3304-3316. PubMed Citation: 20685961
Diez del Corral, R., Aroca, P., Gomez-Skarmeta, J. L., Cavodeassi, F. and Modolell, J. (1999). The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes Dev. 13: 1754-1761. 10398687
Erkman, L., et al. (2000). A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system, Neuron 28: 779-792. PubMed Citation: 11163266
Ferguson, C. A., et al. (2001). The role of effectors of the activin signalling pathway, activin receptors IIA and IIB, and Smad2, in patterning of tooth development. Development 128: 4605-4613. 11714685
Ghysen, A. (1980). The projection of sensory neurons in the central nervous system of Drosophila: choice of the appropriate pathway. Dev. Biol. 78: 521- 541.
Ghysen, A. and Dambly-Chaudiere, C. (1988). From DNA to form: The achaete-scute complex. Genes Dev. 2: 495-501
Glavic, A., Gómez-Skarmeta, J. L. and Mayo, R. (2002). The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 129: 1609-1621. 11923198
Glavic, A., et al. (2004). Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos. Development 131: 347-359. 14681193
Gómez-Skarmeta, J. L., et al. (1995). Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev 9: 1869-1882
Gómez-Skarmeta, J.-L., et al., (1996a). araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85:95-105
Gómez-Skarmeta, J.-L. and Modolell, J. (1996b). araucan and caupolican provide a link between compartment subdivisions and patterning of sensory organs and veins in the Drosophila wing. Genes Dev. 10: 2935-45
Gómez-Skarmeta, J. L., et al. (1998). Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate. EMBO J. 17: 181-190
Gómez-Skarmeta, J. L., de la Calle-Mustienes, E. and Modolell, J. (2001). The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and downregulates Bmp4. Development 128: 551-560. 11171338
Grillenzoni, N., et al. (1998). The iroquois complex controls the somatotopy of Drosophila notum mechanosensory projections. Development 125(18): 3563-3569
Herranz, H. and Morata, G. (2001). The functions of pannier during Drosophila embryogenesis. Development 128: 4837-4846. 11731463
Houweling, A. C., et al. (2001). Gene and cluster-specific expression of the Iroquois family members during mouse development. Mech. Dev. 107: 169-174. 11520674
Ikmi, A., Netter, S. and Coen, D. (2008). Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles. Dev. Biol. 317(2): 634-48. PubMed Citation: 18394597
Itoh, M., et al. (2002). A role for iro1 and iro7 in the establishment of an anteroposterior compartment of the ectoderm adjacent to the midbrain-hindbrain boundary. Development 129: 2317-2327. 11973265
Jin, Z., et al. (2003). Irx4-mediated regulation of Slit1 expression contributes to the definition of early axonal paths inside the retina. Development 130: 1037-1048. 12571096
Johnson, A. N., Mokalled, M. H., Haden, T. N. and Olson, E. N. (2011). JAK/Stat signaling regulates heart precursor diversification in Drosophila. Development 138: 4627-4638. PubMed ID: 21965617
Kudoh, T. and Dawid, I. B. (2001). Role of the iroquois3 homeobox gene in organizer formation. Proc. Natl. Acad. Sci. 98: 7852-7857. 11438735
Lecaudey, V., et al. (2004). The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain. Development 131: 3121-3131. 15175248
Letizia, A., Barrio, R. and Campuzano, S. (2007). Antagonistic and cooperative actions of the EGFR and Dpp pathways on the iroquois genes regulate Drosophila mesothorax specification and patterning. Development 134(7): 1337-46. Medline abstract: 17329358
Leyns, L., Gomez-Skarmeta J. L. and Dambly-Chaudiere, C. (1996). iroquois: A prepattern gene that controls the formation of bristles on the thorax of Drosophila. Mech. Dev. 59: 63-72
Li, D., Sakuma, R., Vakili, N. A., Mo, R., Puviindran, V., Deimling, S., Zhang, X., Hopyan, S. and Hui, C. C. (2014). Formation of proximal and anterior limb skeleton requires early function of irx3 and irx5 and is negatively regulated by shh signaling. Dev Cell 29: 233-240. PubMed ID: 24726282
Lowe, C. J., et al. (2003). Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113: 853-865. 12837244
Matsumoto, K., et al. (2004). The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nat. Neurosci. 7(6): 605-12. 15133517
McNeill, et al. (1997). mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border of the Drosophila eye. Genes Dev. 11: 1073-1082
Mirzoyan, Z. and Pandur, P. (2013). The Iroquois Complex Is Required in the Dorsal Mesoderm to Ensure Normal Heart Development in Drosophila. PLoS One 8: e76498. PubMed ID: 24086746
Mullor, J. L. and Guerrero, I. (2000). A gain-of-function mutant of patched dissects different responses to the Hedgehog gradient. Dev. Bio. 228: 211-224.
Netter, S., et al. (1998). white+ transgene insertions presenting a dorsal/ventral pattern define a single cluster of homeobox genes that is silenced by the Polycomb-group proteins in Drosophila melanogaster. Genetics 149(1): 257-275
Peters, T., et al. (2000). Organization of mouse Iroquois homeobox genes in two clusters suggests a conserved regulation and function in vertebrate development. Genome Res. 10(10): 1453-62. 11042145
Pichaud, F. and Casares, F. (2000). homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc. Mech. Dev. 96: 15-25.
Reggiani, L., et al. (2007). The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev. 21(18): 2358-70. Medline abstract: 17875669
Sato, M, et al. (1999). Bar homeobox genes are latitudinal prepattern genes in the developing Drosophila notum whose expression is regulated by the concerted functions of decapentaplegic and wingless. Development 126: 1457-1466
Scholpp, S., et al. (2007). Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development 134(17): 3167-76. Medline abstract: 17670791
Singh, A., et al. (2004). Dorso-ventral asymmetric functions of teashirt in Drosophila eye development depend on spatial cues provided by early DV patterning genes. Mech. Dev. 121: 365-370. 15110046
Sotillos, S. and de Celis, J. F. (2006). Regulation of decapentaplegic expression during Drosophila wing veins pupal development. Mech. Dev. 123(3): 241-51. 16423512
Villa-Cuesta, E. and Modolell, J. (2005). Mutual repression between msh and Iro-C is an essential component of the boundary between body wall and wing in Drosophila. Development 132(18): 4087-96. 16093324
Villa-Cuesta, E., Gonzalez-Perez, E. and Modolell, J. (2007). Apposition of iroquois expressing and non-expressing cells leads to cell sorting and fold formation in the Drosophila imaginal wing disc. BMC Dev. Biol. 7: 106. Medline abstract: 17880703
Wang, S.-H., Simcox, A. and Campbell, G. (2000). Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development. Genes Dev. 14: 2271-2276.
Wang, X., et al. (2001). Expression of two novel zebrafish iroquois homologues (ziro1 and ziro5) during early development of axial structures and central nervous system. Mech. Dev. 105: 191-195. 11429297
Wernet, M. F., et al. (2003). Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell 115: 267-279. 14636555
Yorimitsu, T., Kiritooshi, N. and Nakagoshi, H. (2011). Defective proventriculus specifies the ocellar region in the Drosophila head. Dev. Biol. 356(2): 598-607. PubMed Citation: 21722630
Zecca, M. and Struhl, G. (2002a). Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development 129: 1357-1368. 11880345
Zecca, M. and Struhl, G. (2002b). Control of growth and patterning of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development 129: 1369-1376. 11880346
date revised: 23 July 2014
Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.