Syntaxin 1A
Alexiades, M. R. and Cepko, C. L. (1997). Subsets of retinal progenitors display temporallyregulated and distinct biases in the fates of their progeny. Development 124 (6): 1119-1131. PubMed Citation: 9102299
Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch1, C. J. and Broadie, K. (1999). Drosophila Unc-13 is essential for synaptic transmission. Nature Neurosci. 2: 965-971. 10526334
Bademosi, A. T., Steeves, J., Karunanithi, S., Zalucki, O. H., Gormal, R. S., Liu, S., Lauwers, E., Verstreken, P., Anggono, V., Meunier, F. A. and van Swinderen, B. (2018), Trapping of Syntaxin1a in presynaptic nanoclusters by a clinically relevant general anesthetic. Cell Rep 22(2): 427-440. PubMed ID: 29320738
Barnard, R. J., Morgan. A. and Burgoyne, R. D. (1997). Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis. J. Cell Biol. 139(4): 875-883. PubMed Citation: 9362506
Bate, M. and Broadie, K. (1995). Wiring by fly: the neuromuscular system of the Drosophila embryo. Neuron 15 (3): 513-525. PubMed Citation: 7546732
Becher, A., et al. (1999). The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J. Neurosci. 19(6): 1922-31. PubMed Citation: 10066245
Beites, C. L., et al. (1999). The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat. Neurosci. 2(5): 434-9. 10321247
Betz, A., et al. (1997). Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J. Biol. Chem. 272: 2520-2526. PubMed Citation: 8999968
Bittner, M. A., Bennett, M. K. and Holz, R. W. (1996). Evidence that syntaxin 1A is involved in storage in the secretory pathway. J. Biol. Chem. 271 (19): 11214-11221. PubMed Citation: 8626670
Boulianne, G. L. and Trimble, W. S. (1995). Identification of a second homolog of N-ethylmaleimide-sensitive fusion protein that is expressed in the nervous system and secretory tissues of Drosophila. Proc. Natl. Acad. Sci. 92(15): 7095-9. PubMed Citation: 7624376
Broadie, K., et al. (1994). Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc. Natl. Acad. Sci. 91(22): 10727-31. PubMed Citation: 7938019
Broadie, K. A., et al. (1995). Syntaxin and synaptobrevin function dowstream of vesicle docking in Drosophila. Neuron 15: 663-673. PubMed Citation: 7546745
Cerezo, J. R., Jimenez, F. and Moya, F. (1995). Characterization and gene cloning of Drosophila syntaxin 1 (Dsynt1): the fruit fly homologue of rat syntaxin 1. Brain Res. Mol. Brain Res. 29 (2): 245-252. PubMed Citation: 7609612
Chapman, E. R., et al. (1996). A novel function for the second C2 domain of synaptotagmin. Ca2+-triggered dimerization. J. Biol. Chem. 271(10): 5844-9. PubMed Citation: 8621455
Cheatham, B., et al. (1996). Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc. Natl. Acad. Sci. 93: 15169-15173. PubMed Citation: 8962046
Chen, Y. A., Scales, S. J. Scheller, R. H. (2001). Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30: 161-170. 11343652
Chheda, M. G., et al. (2001). Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nature Cell Biology 3: 331-338. 11283605
Chin, A. C., et al. (1993). Differential expression of transcripts from syb, a Drosophila melanogaster gene encoding VAMP (synaptobrevin) that is abundant in non-neuronal cells. Gene 131(2): 175-81. PubMed Citation: 8406010
Conner, S. D. and Wessel, G. M. (1999). Syntaxin is required for cell division. Mol. Biol. Cell 10: 2735-2743
Coorssen, J. R., et al. (1998). Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J. Cell Biol. 143(7): 1845-57
Davis, S., et al. (1996). Brain structure and task-specific increase in expression of the gene encoding syntaxin 1B during learning in the rat: a potential molecular marker for learning-induced synaptic plasticity in neural networks. Eur. J. Neurosci. 8 (10): 2068-2074
Deitcher, D. L., et al. (1998). Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci. 18(6): 2028-39. PubMed Citation: 9482790
de Wit, H., et al. (2009). Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138(5): 935-46. PubMed Citation: 19716167
DiAntonio, A., Parfitt, K. D. and Schwarz, T. L. (1993a). Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell 73(7): 1281-90. PubMed Citation: 8100740
DiAntonio, A., et al. (1993b). Identification and characterization of Drosophila genes for synaptic vesicle proteins. J. Neurosci. 13(11): 4924-35. PubMed Citation: 8229205
DiAntonio, A. and Schwarz, T. L. (1994). The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron 12(4): 909-20. PubMed Citation: 7909234
Dulubova, I., et al. (1999). A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18: 4372-4382
Edwardson, J. M., An, S. and Jahn, R. (1997). The secretory granule protein syncollin binds to syntaxin in a Ca2(+)-sensitive manner. Cell 90(2): 325-333.
Fasshauer, D., et al. (1997). A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272: 4582-4590. PubMed Citation: 9020186
Fasshauer, D., et al. (1998). Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. 95(26): 15781-6
Fergestad, T., Davis, W. S. and Broadie, K. (1999). The Stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. J. Neurosci. 19(14): 5847-5860
Fergestad, T. and Broadie, K. (2001). Interaction of Stoned and Synaptotagmin in synaptic vesicle endocytosis. J. Neurosci. 21(4): 1218-1227. 11160392
Fergestad, T., et al. (2001b). Targeted mutations in the Syntaxin H3 domain specifically disrupt SNARE complex function in synaptic transmission. J. Neurosci. 21(23): 9142-9150. 11717347
Fernandez, I., et al. (1998). Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94(6): 841-9
Fernandez, I., et al. (2001). Three-dimensional structure of the Synaptotagmin 1 C2B-Domain: Synaptotagmin 1 as a phospholipid binding machine. Neuron 32: 1057-1069. 11754837
Fujita, Y., Shirataki, H., Sakisaka, T., Asakura, T., Ohya, T., Kotani, H., Yokoyama, S., Nishioka, H., Matsuura, Y., Mizoguchi, A., Scheller, R. H. and Takai, Y. (1998). Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20(5): 905-915. PubMed ID: 9620695
Gaisano, H. Y., et al. (1996). Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol Biol Cell 7 (12): 2019-2027
Garcia, E. P., et al. (1994). A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc. Natl. Acad. Sci. 91 (6): 2003-2007
Gerber, S. H., et al. (2008). Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321(5895): 1507-10. PubMed Citation: 18703708
Gibbs, S. M. and Truman, J. W (1998). Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron 20: 83-93. PubMed Citation: 9459444
González-Gaitán, M. 1 and Jäckle, H. (1997). Role of Drosophila a-Adaptin in presynaptic vesicle recycling. Cell, Vol. 88: 767-776. 9118220
Halachmi, N., et al. (1995). Rop and Ras2, members of the Sec1 and Ras families, are localized in the outer membranes of labyrinthine channels and vesicles of Drosophila nephrocyte, the garland cell. Eur. J. Cell Biol. 67 (3): 275-283. PubMed Citation: 7588884
Hata, Y., et al. (1993). Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron 10: 307-15
Hay, J. C., et al. (1997). Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell 89 (1): 149-158
Hiesinger, P. R., et al. (1999). Neuropil pattern formation and regulation of cell adhesion molecules in Drosophila optic lobe development depend on Synaptobrevin. J. Neurosci. 19(17): 7548-7556. PubMed Citation: 10460261
Hiesinger, P. R., et al. (2005). The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121(4): 607-20. 15907473
Hirling, H. and Scheller, R. H. (1996). Phosphorylation of synaptic vesicle proteins: modulation of the alpha SNAP interaction with the core complex. Proc. Natl. Acad. Sci. 93 (21): 11945-11949
Holthuis, J. C. M., et al. (1998). Two syntaxin homologues in the TGN/endosomal system of yeast EMBO J. 17: 113-126
Huang, F. D., Matthies, H. J., Speese, S. D., Smith, M. A. and Broadie, K. (2004). Rolling blackout, a newly identified PIP2-DAG pathway lipase required for Drosophila phototransduction. Nat. Neurosci 7: 1070-1078. 15361878
Huang, F.-D., Woodruff, E., Mohrmann, R. and Broadie, K. (2006). Rolling blackout is required for synaptic vesicle exocytosis. J. Neurosci. 26(9): 2369-2379. 16510714
Hui, E., Johnson, C. P., Yao, J., Dunning, F. M. and Chapman, E. R. (2009). Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 138(4): 709-21. PubMed Citation: 19703397
Ilardi, J. M. et al. (1999). Snapin: a SNARE-associated protein implicated in synaptic transmission. Nature Neurosci. 2(2): 119-124
Junge, H. J., et al. (2004). Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118(3): 389-401. 15294163
Katsuyama, Y., et al. (2002). Regulation of Synaptotagmin gene expression during ascidian embryogenesis. Dev. Biol. 244: 293-304. 11944938
Kawasaki, F., Mattiuz, A. M. and Ordway, R. W. (1998). Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release. J. Neurosci. 18(24): 10241-9
Kawasaki, F. and Ordway, R. W. (1999). The Drosophila NSF Protein, dNSF1, plays a similar role at neuromuscular and some central synapses. J. Neurophysiol. 82(1): 123-130. PubMed Citation: 10400941
Kim, D. K. Catterall W. A. (1997). Ca2+-dependent and -independent interactions of the isoforms of the alpha1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc. Natl. Acad. Sci. 94(26): 14782-14786
Kottler, B., Bao, H., Zalucki, O., Imlach, W., Troup, M., van Alphen, B., Paulk, A., Zhang, B. and van Swinderen, B. (2013). A sleep/wake circuit controls isoflurane sensitivity in Drosophila. Curr Biol 23(7): 594-598. PubMed ID: 23499534
Lao, G., et al. (2000). Syntaphilin: A Syntaxin-1 clamp that controls SNARE assembly. Neuron 25: 191-201
Li, C. and Meinertzhagen, I. A (1997) The effects of 20-hydroxyecdysone on the differentiation in vitro of cells from the eye imaginal disc from Drosophila melanogaster. Invert. Neurosci. 3: 57-6. PubMed Citation: 9706702
Lickteig, K, M., et al. (2001). Regulation of neurotransmitter vesicles by the homeodomain protein UNC-4 and its transcriptional corepressor UNC-37/Groucho in Caenorhabditis elegans cholinergic motor neurons. J. Neurosci. 21(6): 2001-2014. 11245684
Lightfoot, K., et al. (1994). Conserved cis-elements bind a protein complex that regulates Drosophila ras2/rop bidirectional expression. Br. J. Cancer 69 (2): 264-273. PubMed Citation: 8297724
Littleton, J. T., Bellen, H. J. and Perin, M. S. (1993a). Expression of Synaptotagmin in Drosophila reveals transport and localization of synaptic vesicles to the synapse. Development 118(4): 1077-88. PubMed Citation: 8269841
Littleton, J. T., et al. (1993b). Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell 74(6): 1125-34. PubMed Citation: 8104705
Littleton, J. T., et al. (1994). Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl. Acad. Sci. 91(23): 10888-92. PubMed Citation: 7971978
Littleton, J. T., Upton, L. and Kania, A. (1995). Immunocytochemical analysis of axonal outgrowth in synaptotagmin mutations. J. Neurochem. 65(1): 32-40. PubMed Citation: 7790877
Littleton, J. T., et al. (1998). Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21(2): 401-13. PubMed Citation: 9728921
Loewen, C.A., Lee, S. M., Shin, Y. K. and Reist, N. E. (2006). C2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo. Mol. Biol. Cell 17: 5211-5226. PubMed Citation: 16987956
Low, S. H., et al. (2003). Syntaxin 2 and Endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev. Cell 4: 753-759. 12737809
Lukowitz, W., Mayer, U. and Jurgens, G. (1996). Cytokinesis in the arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84: 61-71
Maximov, A., et al. (2009). Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323: 516-521. PubMed Citation: 19164751
Mochida, S., et al. (1996). Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17 (4): 781-788
Muller, J. M. M., et al (1999). An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion. Nat. Cell Biol. 1: 335-340
Nie, Z., et al. (1999). Overexpression of Cysteine-string proteins in Drosophila reveals interactions with Syntaxin. J. Neurosci. 19(23): 10270-10279. 10575024
Niemeyer, B. A. and Schwarz, T. L. (2000). SNAP-24, a Drosophila SNAP-25 homologue on granule membranes, is a putative mediator of secretion and granule-granule fusion in salivary glands. J. Cell Sci. 113: 4055-64. 11058092
Noel, J., et al. (1999). Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23: 365-376
Nonet, M. L., et al. (1998). Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J. Neurosci. 18(1): 70-80
O'Connor, V., et al. (1997). Disruption of syntaxin-mediated protein interactions blocks neurotransmitter secretion. Proc. Natl. Acad. Sci. 94(22): 12186-12191
Ordway, R. W., Pallanck, L. and Ganetzky, B. (1994). Neurally expressed Drosophila genes encoding homologs of the NSF and SNAP secretory proteins. Proc. Natl. Acad. Sci. 91(12): 5715-9. PubMed Citation: 8202553
Osten, P., et al. (1998). The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21(1): 99-110
Paddock, B. E., et al. (2008). Ca2+-dependent, phospholipid-binding residues of synaptotagmin are critical for excitation-secretion coupling in vivo. J. Neurosci. 28(30): 7458-7466. PubMed Citation: 18650324
Pallanck, L., et al. (1995). Distinct roles for N-ethylmaleimide-sensitive fusion protein (NSF) suggested by the identification of a second Drosophila NSF homolog. J. Biol. Chem. 270(32): 18742-4. PubMed Citation: 7642522
Patel, S. K., et al. (1998). Organelle membrane fusion: a novel function for the syntaxin homolog Ufe1p in ER membrane fusion. Cell 92(5): 611-620
Perin, M. S., et al. (1991). Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J. Biol. Chem. 266(1): 615-22. PubMed Citation: 1840599
Peters, C. and Mayer, A. (1998). Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396(6711): 575-80.
Phillips, A. M., et al. (2000). The products of the Drosophila stoned locus interact with synaptic vesicles via Synaptotagmin. J. Neurosci. 20(22): 8254-8261. 11069931
Prekeris, R., et al. (1998). Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell Biol. 143(4): 957-71
Quetglas, S., et al. (2002). Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J. 21: 3970-3979. 12145198
Rabouille, C., et al. (1998). Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92(5): 603-610
Reist, N. E., et al. (1998). Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J. Neurosci. 18(19): 7662-73. PubMed Citation: 9742137
Riento, K., et al. (1998). Interaction of Munc-18-2 with syntaxin 3 controls the association of apical SNAREs in epithelial cells. J. Cell Sci. 111( Pt 17): 2681-2688
Risinger, C., et al. (1993). Evolutionary conservation of synaptosome-associated protein 25 kDa (SNAP-25) shown by Drosophila and Torpedo cDNA clones. J. Biol. Chem. 268(32): 24408-14. PubMed Citation: 8226991
Risinger, C., et al. (1997). Complex gene organization of synaptic protein SNAP-25 in Drosophila melanogaster. Gene 194(2): 169-77. 9272858
Robinson, I. M., Ranjan, R. and Schwarz, T. L. (2002). Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418: 336-340. 12110845
Rosenmund, C., et al. (2002). Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33: 411-424. 11832228
Ruden, D. M., et al. (2000). Membrane fusion proteins are required for oskar mRNA localization in the Drosophila egg chamber. Dev. Biol. 218: 314-325. PubMed Citation: 10656772
Ruiz-Montasell, B., et al. (1996). Differential distribution of syntaxin isoforms 1A and 1B in the rat central nervous system. Eur. J. Neurosci. 8: 2544-2552
Saitoe, M., et al. (2001). Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release. Science 293: 514-7. 11463917
Salem, N., et al. (1998). A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex. Nature Neurosci. 1(7): 551-556.
Sampo, B., Kaech, S., Kunz, S. and Banker, G. (2003). Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37: 611-624. 12597859
Scales, S. J., et al. (2000). SNAREs contribute to the specificity of membrane fusion. Neuron. 26: 457-464.
Schiavo, G., et al. (1997). Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc. Natl. Acad. Sci. 94: 997-1001
Schulz, J. R., Wessel, G. M. and Vacquier, V. D. (1997). The exocytosis regulatory proteins syntaxin and VAMP are shed from sea urchin sperm during the acrosome reaction. Dev. Biol. 191(1): 80-87
Schulze, K. L., Littleton, J. T., Salzberg, A., Halachmi, N., Stern, M., Lev, Z. and Bellen, H. J. (1994). Rop, a Drosophila homolog of yeast Sec1 and vertebrate n-Sec1/Munc-18 proteins, is a negative regulator of neurotransmitter release in vivo. Neuron 13: 1099-1108. PubMed Citation: 7946348
Schulze, K. L., et al. (1995). Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80 (2): 311-320. PubMed Citation: 7834751
Schulze, K. L. and Bellen, H. J. (1996). Drosophila syntaxin is required for cell viability and may function in membrane formation and stabilization. Genetics 144 (4): 1713-1724. PubMed Citation: 8978057
Shao, X., et al. (1997). Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 18 (1): 133-142
Shiff, G. and Morel, N. (1997). Rapid anterograde axonal transport of the syntaxin-SNAP 25-VAMP complex. J. Neurochem. 68 (4): 1663-1667
Shuang, R., et al. (1998). Regulation of Munc-18/Syntaxin 1A interaction by Cyclin-dependent Kinase 5 in nerve endings. J. Biol. Chem. 273(9): 4957-4966.
Somma, M. P., et al. (2002). Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell 13: 2448-2460. 12134082
Söllner, et al. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318-324
Stimson, D. T., et al. (1998). A product of the Drosophila stoned locus regulates neurotransmitter release. J. Neurosci. 18(23): 9638-9649. PubMed Citation: 9822725
Stanley, E. F. and Mirotznik, R. R. (1997). Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature 385: 340-343
Stewart, B. A., et al. (2001). SNARE-dependent signaling at the Drosophila wing margin. Dev. Bio. 234: 13-23. 11356016
Sudhof, T. C., et al. (1989). A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron 2(5): 1475-81. PubMed Citation: 2560644
Sugita, S., et al. (2001). Synaptotagmin VII as a plasma membrane Ca2+ sensor in exocytosis. Neuron 30: 459-473. 11395007
Sugita, S., et al. (2002). Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities. EMBO J. 21: 270-280. 11823420
Sutton, R. B., et al. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395: 347-53. 9759724
Sweeney, S. T., et al. (1995). Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14(2): 341-51. PubMed Citation: 7857643
Takei, N., et al. (1997). Brain-derived neurotrophic factor increases the stimulation-evoked release of glutamate and the levels of exocytosis-associated proteins in cultured cortical neurons from embryonic rats. J. Neurochem. 68 (1): 370-375
Tian, A. G., Tamori, Y., Huang, Y. C., Melendez, N. T. and Deng, W. M. (2013). Efficient EGFR signaling and dorsal-ventral axis patterning requires syntaxin dependent Gurken trafficking. Dev Biol 373: 349-358. PubMed ID: 23127433
Tolar, L. A. and Pallanck, L. (1998). NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J. Neurosci. 18(24): 10250-6
Troup, M., Zalucki, O. H., Kottler, B. D., Karunanithi, S., Anggono, V. and van Swinderen, B. (2019). Syntaxin1A neomorphic mutations promote rapid recovery from isoflurane anesthesia in Drosophila melanogaster. Anesthesiology. PubMed ID: 31356232
Ubach, J., et al. (1998). Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 17(14): 3921-3930
Valdez, A. C., et al. (1999). Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network. J. Cell Sci. 112 ( Pt 6): 845-54
van Swinderen, B., et al. (1999). A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 96(5): 2479-2484
Veeranna, G. P. and Pant, H. C. (1997). Expression of p67 (Munc-18), Cdk5, P-NFH and syntaxin during development of the rat cerebellum. Dev. Neurosci. 19 (2): 172-183
Vilinsky, I., et al. (2002). A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission. Genetics 162: 259-271. 12242238
Wada, Y. et al. (1997). Vam3p, a new member of syntaxin related protein, is required for vacuolar assembly in the yeast Saccharomyces cerevisiae. J. Cell Sci. 110: 1299-1306
Weber, T., et al. (1998). SNAREpins: Minimal machinery for membrane fusion. Cell 92: 759-772
Weimbs, T., et al. (1997). A conserved domain is present in different families of vesicular fusion proteins: a new superfamily Proc. Natl. Acad. Sci. 94: 3046-3051
Wiser, O., Bennett, M. K. and Atlas, D. (1996). Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J. 15 (16): 4100-4110
Wu, M. N., et al. (1998). ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner EMBO J. 17: 127-139. PubMed Citation: 9427747
Wu, M. N., et al. (1999). Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 23: 593-605
Xue, M., et al. (2009). Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila Complexins orchestrates synaptic vesicle exocytosis. Neuron 64: 367-380. PubMed Citation: 19914185
Yoshihara, M., et al. (1999). Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP. J. Neurosci. 19(7): 2432-41. PubMed Citation: 10087058
Yoshihara, M., Suzuki, K. and Kidokoro, Y. (2000). Two independent pathways mediated by cAMP and protein kinase A enhance spontaneous transmitter release at Drosophila neuromuscular junctions. J. Neurosci. 20(22): 8315-22. 11069938
Zhang, X., et al. (2002). Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34: 599-611. 12062043
Zhong, P., et al. (1997). An alpha-helical minimal binding domain within the H3 domain of syntaxin is required for SNAP-25 binding Biochemistry 36 (14): 4317-4326
date revised: 20 April 2021
Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.