tinman


REFERENCES

Akasaka, T., et al. (2006). The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman. Proc. Natl. Acad. Sci. 103: 11999-12004. PubMed ID: 16882722

Azpiazu, N. and Frasch, M. (1993). tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 7: 1325-40. PubMed ID: 8101173

Balakireva, E. S. and Ayala, F. J. (2004). Nucleotide variation in the tinman and bagpipe homeobox genes of Drosophila melanogaster. Genetics 166: 1845-1856. PubMed ID: 15126403

Balavoine, G. (1996). Identification of members of several homeobox genes in a planarian using a ligation-mediated polymerase chain reaction technique. Nucleic Acids Res. 24(8): 1547-53. PubMed ID: 8628690

Berger, M. F., et al. (2008). Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133(7): 1266-76. PubMed ID: 18585359

Biben, C., et al. (1997). Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 11(11): 1357-1369. PubMed ID: 9192865

Bodmer, R., Jan, L. Y. and Jan, Y. N. (1990). A new homeobox-containing gene, msh-2, is transiently expressed early during mesoderm formation of Drosophila. Development 110: 661-9. PubMed ID: 1982429

Bodmer, R. (1993). The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118: 719-729. PubMed ID: 7915669

Boukhatmi, H., Frendo, J. L., Enriquez, J., Crozatier, M., Dubois, L. and Vincent, A. (2012). Tup/Islet1 integrates time and position to specify muscle identity in Drosophila. Development 139: 3572-3582. PubMed ID: 22949613

Boyle, M., Bonini, N. and DiNardo, S. (1997). Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development 124: 971-982. PubMed ID: 9056773

Bradley, P. L., Myat, M. M., Comeaux, C. A. and Andrew, D. J. (2003). Posterior migration of the salivary gland requires an intact visceral mesoderm and integrin function. Dev. Biol. 257: 249-262. PubMed ID: 12729556

Broihier, H. T., et al. (1998). zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development 125(4): 655-666. PubMed ID: 9435286

Bruneau, B. G., et al. (2000). Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand. Dev. Biol. 217: 266-277. PubMed ID: 10625552

Busser, B. W., Haimovich, J., Huang, D., Ovcharenko, I. and Michelson, A. M. (2015). Enhancer modeling uncovers transcriptional signatures of individual cardiac cell states in Drosophila. Nucleic Acids Res 43(3): 1726–1739. PubMed ID: 25609699

Cambier, L., Plate, M., Sucov, H. M. and Pashmforoush, M. (2014). Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3. Development 141: 2959-2971. PubMed ID: 25053429

Chen, C. Y. and Schwartz, R. J. (1995). Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomainfactor, nkx-2.5. J. Biol. Chem. 270: 15628-15633. PubMed ID: 7797561

Chen, J.-N. and Fishman, M. C. (1995). Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122: 3809-3816. PubMed ID: 9012502

Chen, C. Y. and Schwartz, R. J. (1997). Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity. Mol. Endocrinol. 11(6): 812-822. PubMed ID: 9171244

Chen, F., et al. (2002). Hop is an unusual homeobox gene that modulates cardiac development. Cell 110: 713-723. PubMed ID: 12297045

Choi, C. Y. et al. (1999). The homeodomain transcription factor NK-4 acts as either a transcriptional activator or repressor and interacts with the p300 coactivator and the groucho corepressor. J. Biol. Chem. 274: 31543-31552. PubMed ID: 10531357

Clark, I. B., Boyd, J., Hamilton, G., Finnegan, D. J. and Jarman, A. P. (2006). D-Six-4 plays a key role in patterning cell identities deriving from the Drosophila mesoderm. Dev. Biol. 294(1): 220-31. PubMed ID: 16595131

Cleaver, O. B., Patterson, K. D. and Krieg, P. A. (1996). Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development 122, 3549-3556. PubMed ID: 8951070

Cripps, R. M., Zhao, B. and Olson, E. N. (1999). Transcription of the myogenic regulatory gene Mef2 in cardiac, somatic, and visceral muscle cell lineages Is regulated by a Tinman-dependent core enhancer. Dev. Biol. 215(2): 420-430. PubMed ID: 10545248

Davis, D. L., Wessels, A. and Burch, J. B. E. (2000). An Nkx-dependent enhancer regulates cGATA-6 gene expression during early stages of heart development. Dev. Biol. 217: 310-322. PubMed ID: 10625556

de Velasco, B., Mandal, L., Mkrtchyan, M. and Hartenstein, V. (2006). Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster. Dev. Genes Evol. 216(1): 39-51. PubMed ID: 16249873

Durocher, D., et al. (1997). The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16(18): 5687-5696. PubMed ID: 9312027

Durocher, D. and Nemer, M. (1998). Combinatorial interactions regulating cardiac transcription. Dev. Genet. 22(3): 250-262. PubMed ID: 9621432

Ehrman, L. A. and Yutzey, K. E. (1999). Lack of regulation in the heart forming region of avian embryos. Dev. Biol. 207(1): 163-175. PubMed ID: 10049572

Erceg, J., Saunders, T. E., Girardot, C., Devos, D. P., Hufnagel, L. and Furlong, E. E. (2014). Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's activity. PLoS Genet 10: e1004060. PubMed ID: 24391522

Evans, S.M., et al. (1995). tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNKX-2.3, a second vertebrate homolog of tinman. Development 121: 3889-99. PubMed ID: 8582297

Franch-Marro, X. and Casanova, J. (2000). The alternative migratory pathways of the Drosophila tracheal cells are associated with distinct subsets of mesodermal cells. Dev. Biol. 227: 80-90. PubMed ID: 11076678

Frasch, M. (1995). Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374: 464-7. PubMed ID: 7700357

Fu, Y., et al. (1998). Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 125(22): 4439-4449. PubMed ID: 9778503

Gajewski, K., et al. (1997). D-mef2 is a target for Tinman activation during Drosophila heart development. EMBO J. 16: 515-522. PubMed ID: 9034334

Gajewski, K., et al. (1998). Combinatorial control of Drosophila mef2 gene expression in cardiac and somatic muscle cell lineages. Dev. Genes Evol. 208(7): 382-92. PubMed ID: 9732552

Gajewski, K., et al. (1999). The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila. Development 126: 5679-5688. PubMed ID: 10572044

Gajewski, K., et al. (2001). Pannier is a transcriptional target and partner of Tinman during Drosophila cardiogenesis. Dev. Bio. 233: 425-436. PubMed ID: 11336505

Gorczyca, M. G., Phillis, R. W. and Budnik, V. (1994). The role of tinman, a mesodermal cell fate gene, in axon pathfinding during the development of the transverse nerve in Drosophila. Development 120: 2143-2152. PubMed ID: 7925017

Grow, M. W. and Krieg, P. A. (1998). Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev. Biol. 204(1): 187-96.

Habets, P. E. M. H., et al. (2002). Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev. 16: 1234-1246. PubMed ID: 12023302

Halfon, M. S., et al. (2000). Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell 103: 63-74. PubMed ID: 11051548

Han, Z. and Olson, E. N. (2005). Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis. Development 132: 3525-3536. PubMed ID: 15975941

Harfe, B. D. and Fire, A. (1998a). Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans. Development 125(3): 421-429. PubMed ID: 9425137

Harfe, B. D., et al. (1998b). Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev. 12(16): 2623-2635. PubMed ID: 9716413

Haun, C., et al. (1998). Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene. Proc. Natl. Acad. Sci. 95(9): 5072-5075. PubMed ID: 98226769

He, A., Kong, S. W., Ma, Q., and Pu, W. T. (2011). Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc. Natl. Acad. Sci. 108: 5632-5637. PubMed ID: 21415370

Hendren, J. D., Shah, A. P., Arguelles, A. M. and Cripps, R. M. (2007). Cardiac expression of the Drosophila Sulphonylurea receptor gene is regulated by an intron enhancer dependent upon the NK homeodomain factor Tinman. Mech. Dev. 124(6): 416-26. PubMed ID: 17433632

Hiroi, Y., et al. (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat. Genet. 28(3): 276-80. PubMed ID: 11431700

Holland, N. D., et al. (2003). AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev. Bio. 255: 128-137. PubMed ID: 12618138

Hosono, C., Takaira, K., Matsuda, R. and Saigo, K. (2003). Functional subdivision of trunk visceral mesoderm parasegments in Drosophila is required for gut and trachea development. Development 130: 439-449. PubMed ID: 12490551

Jagla, K., et al. (1994). A distinct class of homeodomain proteins is encoded by two sequentially expressed Drosophila genes from the 93D/E cluster. Nucleic Acids Res 22: 1202-7. PubMed ID: 7909370

Jagla, K., et al. (1997). ladybird, a new component of the cardiogenic pathway in Drosophila required for diversification of heart precursors. Development 124: 3471-3479. PubMed ID: 9342040

Jagla, T., et al. (1998). ladybird determines cell fate decisions during diversification of Drosophila somatic muscles. Development 125(18): 3699-3708. PubMed ID: 9716535

Jiang, Y., Drysdale, T. A. and Evans, T. (1999). A role for GATA-4/5/6 in the regulation of Nkx2.5 expression with implications for patterning of the precardiac field. Dev. Biol. 216(1): 57-71

Johnson, A., Bergman, C., Kreitman, M. and Newfeld, S. (2003). Embryonic enhancers in the dpp disk region regulate a second round of Dpp signaling from the dorsal ectoderm to the mesoderm that represses Zfh-1 expression in a subset of pericardial cells. Dev. Biol. 262: 137-151. PubMed ID: 14512024

Johnson, A. N., Burnett, L. A., Sellin, J., Paululat, A. and Newfeld, S. J. (2007). Defective decapentaplegic signaling results in heart overgrowth and reduced cardiac output in Drosophila. Genetics 176(3): 1609-24. PubMed ID: 17507674

Johnson, A. N., Mokalled, M. H., Haden, T. N. and Olson, E. N. (2011). JAK/Stat signaling regulates heart precursor diversification in Drosophila. Development 138(21): 4627-38. PubMed ID: 21965617

Junion, G., et al. (2012). A transcription factor collective defines cardiac cell fate and reflects lineage history. Cell 148(3): 473-86. PubMed ID: 22304916

Kasahara, H. and Izumo, S. (1999). Identification of the in vivo casein kinase II phosphorylation site within the homeodomain of the cardiac tisue-specifying homeobox gene product Csx/Nkx2.5. Mol. Cell. Biol. 19(1): 526-36. PubMed ID: 9858576

Kim, Y-S. and Nirenberg, M. (1989). Drosophila NK-homeobox genes. Proc. Natn. Acad. Sci. 86: 7716-7720. PubMed ID: 2573058

Kimura, K., Kodama, A., Hayasaka, Y. and Ohta, T. (2004). Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster. Development 131: 1597-1606. PubMed ID: 14998927

Klinedinst, S. L. and Bodmer, R. (2003). Gata factor Pannier is required to establish competence for heart progenitor formation. Development 130: 3027-3038. PubMed ID: 12756184

Kremser, T., et al. (1999a). Tinman regulates the transcription of the beta3 tubulin gene (betaTub60D) in the dorsal vessel of Drosophila. Dev. Biol. 216(1): 327-39. PubMed ID: 10588882

Kremser, T., et al. (1999b). Expression of the beta3 tubulin gene (beta Tub60D) in the visceral mesoderm of Drosophila is dependent on a complex enhancer that binds Tinman and UBX. Mol. Gen. Genet. 262(4-5): 643-58. PubMed ID: 10628847

Krenn, H. W. and Pass, G. (2005). Morphological diversity and phylogenetic analysis of wing circulatory organs in insects, part II: Holometabola. Zoology 98: 147-164. PubMed ID:

Lam, N., Chesney, M. A. and Kimble, J. (2006). Wnt signaling and CEH-22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr. Biol. 16: 287-295. PubMed ID: 16461282

Lee, H. H. and Frasch, M. (2005). Nuclear integration of positive Dpp signals, antagonistic Wg inputs and mesodermal competence factors during Drosophila visceral mesoderm induction. Development 132: 1429-1442. PubMed ID: 15750188

Lee, K.-H., Xu, Q and Breitbart, R. E. (1996). A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm. Dev. Biol. 180: 722-731. PubMed ID: 8954740

Lee, K.-H., Evans, S., Ruan, T. Y. and Lassar, A. B. (2004). SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac-specific expression of a GATA4/5/6-dependent chick Nkx2.5 enhancer. Development 131: 4709-4723. PubMed ID: 15329343

Lee, Y. M., et al. (1997). Twist-mediated activation of the NK-4 homeobox gene in the visceral mesoderm of Drosophila requires two distinct clusters of E-box regulatory elements. J. Biol. Chem. 272(28): 17531-17541. PubMed ID: 9211899

Lee, Y., et al. (1998). The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol. Cell. Biol. 18(6): 3120-3129. PubMed ID: 9584153

Liberatore, C. M., et al. (2002). Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev. Biol. 244: 243-256. PubMed ID: 11944934

Lien, C. L., et al. (1999). Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development 126(1): 75-84. PubMed ID: 9834187

Lien, C. L., et al. (2002). Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev. Biol. 244: 257-266. PubMed ID: 11944935

Lints, T. J., et al. (1993). Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119: 419-31. PubMed ID: 7904557

Liu, Y. H., Jakobsen. J. S., Valentin. G., Amarantos, I., Gilmour, D. T. and Furlong, E. E. (2009). A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev. Cell 16(2): 280-91. PubMed ID: 19217429

Lo, P. C. H. and Frasch, M. (2001). A role for the COUP-TF-related gene seven-up in the diversification of cardioblast identities in the dorsal vessel of Drosophila. Mech. Dev. 104: 49-60. PubMed ID: 11404079

Lo, P. C. H., Skeath, J. B., Gajewski, K. Schulz, R. A. and Frasch, M. (2002). Homeotic genes autonomously specify the anteroposterior subdivision of the Drosophila dorsal vessel into aorta and heart. Dev. Bio. 251: 307-319. PubMed ID: 12435360

Lyons, I., et al. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9: 1654-1666. PubMed ID: 7628699

Mandal, L., Banerjee, U. and Hartenstein, V. (2004). Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat. Genet. 36: 1019-1023. PubMed ID: 15286786

Mann, T., Bodmer, R. and Pandur, P. (2009). The Drosophila homolog of vertebrate Islet1 is a key component in early cardiogenesis. Development 136(2): 317-26. PubMed ID: 19088091

Michelson, A. M., et al. (1998). Dual functions of the heartless fibroblast growth factor receptor in development of the Drosophila embryonic mesoderm. Dev. Genet. 22(3): 212-229. PubMed ID: 9621429

Miskolczi-McCallum, C. M., Scavetta, R. J., Svendsen, P. C., Soanes, K. H. and Brook, W. J. (2005). The Drosophila melanogaster T-box genes midline and H15 are conserved regulators of heart development. Dev. Biol. 2005 278(2): 459-72. PubMed ID: 15680363

Molkentin, J. D., et al. (2000). Direct activation of a GATA6 cardiac enhancer by Nkx2.5: Evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. Dev. Biol. 217: 301-309 . PubMed ID: 10625555

Mukai, M., Kashikawa, M. and Kobayashi, S. (1999). Induction of indora expression in pole cells by the mesoderm is required for female germ-line development in Drosophila melanogaster. Development 126: 1023-1029. PubMed ID: 9927602

Nasonkin, I., Alikasifoglu, A., Ambrose, C., Cahill, P., Cheng, M., Sarniak, A., Egan, M. and Thomas, P. (1999). A novel sulfonylurea receptor family member expressed in the embryonic Drosophila dorsal vessel and tracheal system. J. Biol. Chem. 274: 29420-24925. PubMed ID: 10506204

Newman, C. S. and Krieg, P. A. (1998). tinman-Related genes expressed during heart development in Xenopus. Dev. Genet. 22(3): 230-238. PubMed ID: 9621430

Nguyen, H. T. and Xu, X. (1998). Drosophila mef2 expression during mesoderm development is controlled by a complex array of cis-acting regulatory modules. Dev. Biol. 204(2): 550-66. PubMed ID: 9882489

Nikolova, M., Chen, X. and Lufkin, T. (1997). Nkx2.6 expression is transiently and specifically restricted to the branchial region of pharyngeal-stage mouse embryos. Mech. Dev. 69(1-2): 215-218. PubMed ID: 9486544

Nimura, K., Yamamoto, M., Takeichi, M., Saga, K., Takaoka, K., Kawamura, N., Nitta, H., Nagano, H., Ishino, S., Tanaka, T., Schwartz, R.J., Aburatani, H. and Kaneda, Y. (2016). Regulation of alternative polyadenylation by Nkx2-5 and Xrn2 during mouse heart development. Elife [Epub ahead of print]. PubMed ID: 27331609

Okkema, P. G., et al. (1997). The Caenorhabditis elegans NK-2 homeobox gene ceh-22 activates pharyngeal muscle gene expression in combination with pha-1 and is required for normal pharyngeal development. Development 124(20): 3965-3973. PubMed ID: 9374394

Pabst, O., Zweigerdt, R. and Arnold, H. H. (1999). Targeted disruption of the homeobox transcription factor Nkx2-3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development 126(10): 2215-2225. PubMed ID: 10207146

Page, D. T. (2002). Inductive patterning of the embryonic brain in Drosophila Development 129: 2121-2128. PubMed ID: 11959822

Papizan, J. B., et al. (2011). Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes Dev. 25(21): 2291-305. PubMed ID: 22056672

Pashmforoush, M., et al. (2004). Nkx2-5 pathways and congenital heart disease: Loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117: 373-386. PubMed ID: 15109497

Pass, G. (2000). Accessory pulsatile organs: evolutionary innovations in insects. Annu. Rev. Entomol. 45: 495-518. PubMed ID: 10761587

Pass, G., et al. (2006). Phylogenetic relationships of the orders of Hexapoda: contributions from the circulatory organs for a morphological data matrix. Arthropod. Syst. Phylogeny 64: 165-203. PubMed ID:

Prall, O. W. J. et al. (2007). An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128: 947-959. PubMed ID: 17350578

Qian, L., Liu, J. and Bodmer R. (2005). Neuromancer Tbx20-related genes (H15/midline) promote cell fate specification and morphogenesis of the Drosophila heart. Dev. Biol. 279(2): 509-24. PubMed ID: 15733676

Raffin, M., et al. (2000). Subdivision of the cardiac Nkx2.5 expression domain into myogenic and nonmyogenic compartments. Dev. Biol. 218: 326-340. PubMed ID: 10656773

Ranganayakulu, G., et al. (1998). Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 125(16): 3037-3048. PubMed ID: 9671578

Reecy, J. M., et al. (1999). Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5. Development 126(4): 839-849. PubMed ID: 9895330

Reifers, F., et al. (2000). Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 ( fgf8/acerebellar). Development 127: 225-235. PubMed ID: 10603341

Reim, I., Mohler, J. and Frasch, M. (2005a). Tbx20-related genes, mid and H15, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. Mech. Dev. 122: 1056-1069. PubMed ID: 15922573

Reim, I. and Frasch, M. (2005b). The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development 132: 4911-4925. PubMed ID: 16221729

Reiter, J. F., et al. (1999). Gata5 is required for the development of the heart and endoderm in zebrafish. Genes. Dev. 13: 2983-2995. PubMed ID: 10580005

Reuter, R., Grunewald, B., and Leptin, M. (1993). A role for the mesoderm in endodermal migration and morphogenesis in Drosophila. Development 119: 1135-45. PubMed ID: 8306879

Ryan, K. M., Hendren, J. D., Helander, L. A. and Cripps, R. M. (2007). The NK homeodomain transcription factor Tinman is a direct activator of seven-up in the Drosophila dorsal vessel. Dev Biol. 302(2): 694-702. PubMed ID: 17098220

Sandmann, T., et al. (2007). A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev. 21: 436-449. PubMed ID: 17322403

Schaub, C. and Frasch, M. (2013). Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgutmorphogenesis. Dev Biol. 376(2): 245-59. Org-1 is required for the diversificationPubMed ID: 23380635

Schlesinger, J., et al. (2011). The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet. 7: e1001313. PubMed ID: 21379568

Schott, J. J., et al. (1998). Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281(5373): 108-111. PubMed ID: 9651244

Schultheiss, T. M., Xydas, S. and Lassar, A. B. (1995). Induction of avian cardiac myogenesis by anterior endoderm. Development 121: 4203-4214. PubMed ID: 8575320

Searcy, R. D., et al. (1998). A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 125(22): 4461-4470. PubMed ID: 9778505

Sellin, J., Albrecht, S., Kölsch, V. and Paululat, A. (2006). Dynamics of heart differentiation, visualized utilizing heart enhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene Expression Patterns 6: 360-375. PubMed ID: 16455308

Sellin, J., Drechsler M., Nguyen H. T. and Paululat, A. (2009). Antagonistic function of Lmd and Zfh1 fine tunes cell fate decisions in the Twi and Tin positive mesoderm of Drosophila melanogaster. Dev. Biol. 326: 444-455. PubMed ID: 19028484

Sepulveda, J. L., et al. (1998). GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol. Cell. Biol. 18(6): 3405-3415. PubMed ID: 9584181

Serbedzija, G. N., Chen, J.-N. and Fishman, M. C. (1998). Regulation in the heart field of zebrafish. Development 125(6): 1095-1101. PubMed ID: 9463356

Shi, Y., et al. (2000). BMP signaling is required for heart formation in vertebrates. Dev. Biol. 224: 226-237. PubMed ID: 10926762

Shin, C. H., et al. (2002). Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110: 725-735. PubMed ID: 12297046

Skerjanc, I. S., et al. (1998). Myocyte enhancer factor 2C and Nkx2-5 up-regulate each other's expression and initiate cardiomyogenesis in P19 cells. J. Biol. Chem. 273(52): 34904-10. PubMed ID: 9857019

Small, E. M. and Krieg, P. A. (2003). Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev. Biol. 261: 116-131. PubMed ID: 12941624

Smith, D. M., et al. (2000). Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary. Development 127: 3671-3681. PubMed ID: 10934012

Sparrow, D. B., et al. (2000). Regulation of the tinman homologues in Xenopus embryos. Dev. Bio. 227: 65-79. PubMed ID: 11076677

Stennard, F. A., et al. (2003). Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev. Biol. 262: 206-224. PubMed ID: 14550786

Takeuchi, J. K., et al. (2005). Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development 132(10): 2463-74. PubMed ID: 15843409

Tanaka, M., et al. (1998). Vertebrate homologs of tinman and bagpipe: roles of the homeobox genes in cardiovascular development. Dev. Genet. 22(3): 239-249. PubMed ID: 9621431

Tanaka M., et al. (1999a). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126(6): 1269-1280. PubMed ID: 10021345

Tanaka, M., et al. (1999b). Complex modular cis-acting elements regulate expression of the cardiac specifying homeobox gene Csx/Nkx2.5. Development 126(7): 1439-1450. PubMed ID: 10068637

Tanaka, M., et al. (2001). Nkx2.5 and Nkx2.6, homologs of Drosophila tinman, are required for development of the pharynx. Mol. Cell. Bio. 21: 4391-4398. PubMed ID: 11390666

Targoff, K. L., Colombo, S., George, V., Schell, T., Kim, S. H., Solnica-Krezel, L. and Yelon, D. (2013). Nkx genes are essential for maintenance of ventricular identity. Development 140: 4203-4213. PubMed ID: 24026123

Tögel, M., Pass, G. and Paululat, A. (2008). The Drosophila wing hearts originate from pericardial cells and are essential for wing maturation. Dev. Biol. 318(1): 29-37. PubMed ID: 18430414

Tokusumi, T., et al. (2007). U-shaped protein domains required for repression of cardiac gene expression in Drosophila. Differentiation 75: 166-174. PubMed ID: 17316386

Tonissen, K. F., et al. (1994). XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development. Dev. Biol 162: 325-8. PubMed ID: 7545912

von Both, I., et al. (2004). Foxh1 is essential for development of the anterior heart field. Dev. Cell 7: 331-345. PubMed ID: 15363409

Wang, C.-C., et al. (2000). Homeodomain factor Nkx2-3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Dev. Bio. 224: 152-167. PubMed ID: 10926756

Wang, J., Tao, Y., Reim, I., Gajewski, K., Frasch, M. and Schulz, R. A. (2005). Expression, regulation, and requirement of the Toll transmembrane protein during dorsal vessel formation in Drosophila melanogaster. Mol. Cell Biol. 25(10): 4200-10. PubMed ID: 15870289

Weiss, J. B., Suyama, K. L., Lee, H.-H. and Scott, M. P. (2001). Jelly belly: A Drosophila LDL receptor repeat-containing signal required for mesoderm migration and differentiation. Cell 107: 387-398. PubMed ID: 11701128

Wharton, K. A. and Crews, S. T. (1993). CNS midline enhancers of the Drosophila slit and Toll genes. Mech. Dev. 40: 141-154. PubMed ID: 8494768

White, K., et al. (1999). Microarray analysis of Drosophila development during metamorphosis. Science 286: 2179-2184. PubMed ID: 10591654

Xu, P., et al. (2012). Spire, an actin nucleation factor, regulates cell division during Drosophila heart development. PLoS ONE 7(1): e30565. PubMed ID: 22276214

Yin, Z., Xu, X. L. and Frasch, M. (1997). Regulation of the Twist target gene tinman by modular cis-regulatory elements during early mesoderm development. Development 124(24): 4971-4982. PubMed ID: 9362473

Yin, Z. and Frasch, M. (1998). Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Dev. Genet. 22(3): 187-200. PubMed ID: 9621427

Xu, X., et al. (1998). Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes Dev. 12(15): 2354-2370. PubMed ID: 9694800

Yamagishi, H., et al. (2001). The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev. Biol. 239(2): 190-203. PubMed ID: 11784028

Zaffran, S., Kuchler, A., Lee, H.-H. and Frasch, M. (2001). biniou (FoxF), a central component in a regulatory network controlling visceral mesoderm development and midgut morphogenesis in Drosophila. Genes Dev. 15: 2900-2915. PubMed ID: 11691840

Zhang, L., Nomura-Kitabayashi, A., Sultana, N., Cai, W., Cai, X., Moon, A. M. and Cai, C. L. (2014). Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Dev Biol [Epub ahead of print]. PubMed ID: 24613616

Zou, Y., et al. (1997). CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124: 793-804. PubMed ID: 9043061


tinman: Biological Overview | Evolutionary Homologs | Regulation | Targets of Activity | Protein Interactions | Developmental Biology | Effects of Mutation

date revised: 5 April 2015

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.