nautilus


REFERENCES

Amin, N. M., et al. (2007). A Zn-finger/FH2-domain containing protein, FOZI-1, acts redundantly with CeMyoD to specify striated body wall muscle fates in the Caenorhabditis elegans postembryonic mesoderm. Development 134(1): 19-29. PubMed ID: 17138663

Anand, G., et al. (1997). Novel regulation of the helix-loop-helix protein Id1 by S5a, a subunit of the 26 S proteasome. J. Biol. Chem. 272(31): 19140-19151. PubMed ID: 9235903

Baker, R. and Schubiger, G. (1995). Ectoderm induces muscle-specific gene expression in Drosophila embryos. Development 121: 1387-1398. PubMed ID: 7789269

Balagopalan, L., Keller, C. A. and Abmayr, S. M. (2001). Loss-of-function mutations reveal that the Drosophila nautilus gene is not essential for embryonic myogenesis or viability. Dev. Bio. 231: 374-382. PubMed ID: 11237466

Bendall, A. J., et al. 1999). Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development 126: 4965-4976. PubMed ID: 10529415

Bergstrom, D. A. and Tapscott, S. J. (2001). Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family. Mol. Cell. Bio. 21: 2404-2412. PubMed ID: 11259589

Bergstrom, D. A., et al. (2002). Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Molec. Cell 9: 587-600. PubMed ID: 11931766

Blais, A., et al. (2005). An initial blueprint for myogenic differentiation. Genes Dev. 19: 553-569. PubMed ID: 15706034

Bonnet, A., Dai, F., Brand-Saberi, B. and Duprez, D. (2010). Vestigial-like 2 acts downstream of MyoD activation and is associated with skeletal muscle differentiation in chick myogenesis. Mech. Dev. 127(1-2): 120-36. PubMed ID: 19833199

Bour, B. A., Chakravarti, M., West, J. M., and Abmayr, S. M. (2000). Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev. 14: 1498-1511. PubMed ID: 10859168

Borycki, A.-G., et al. (1997). Distinct signal/response mechanisms regulate pax1 and QmyoD activation in sclerotomal and myotomal lineages of quail somites. Dev. Biol. 185(2): 185-200. PubMed ID: 9187082

Borycki, A.-G., Mendham, L. and Emerson, C. P. (1998). Control of somite patterning by Sonic hedgehog and its downstream signal response genes. Development 125(4): 777-790. PubMed ID: 9435297

Borycki, A.-G., et al. (1999). Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 126: 4053-4063. PubMed ID: 10457014

Breitschopf, K., et al. (1998). A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 17(20): 5964-5973. PubMed ID: 9774340

Brent, A. E., Braun, T. Tabin, C. J. (2005). Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132(3): 515-28. PubMed ID: 15634692

Buchberger, A., Freitag, D. and Arnold, H. H. (2007). A homeo-paired domain-binding motif directs Myf5 expression in progenitor cells of limb muscle. Development 134(6): 1171-80. PubMed ID: 17301086

Caretti, G., Di Padova, M., Micales, B., Lyons, G. E. and Sartorelli, V. (2004). The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18(21): 2627-38. PubMed ID: 15520282

Chen, J. C. J., Ramachandran, R. and Goldhamer, D. J. (2002). Essential and redundant functions of the MyoD distal regulatory region revealed by targeted mutagenesis. Dev. Biol. 245: 213-223. PubMed ID: 11969267

Corbin, V., et al. (1991). A role for the Drosophila neurogenic genes in mesoderm differentiation. Cell 67: 311-23. PubMed ID: 1913825

Coutelle, O., et al. (2001). Hedgehog signalling is required for maintenance of myf5 and myod expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev. Bio. 236: 136-150. PubMed ID: 11456450

Daou, N., Lecolle, S., Lefebvre, S., Gaspera, B. D., Charbonnier, F., Chanoine, C. and Armand, A. S. (2013). A new role for the calcineurin/NFAT pathway in neonatal myosin heavy chain expression via the NFATc2/MyoD complex during mouse myogenesis. Development 140: 4914-4925. PubMed ID: 24301466

Datta, B., et al. (1998). Increase in p202 expression during skeletal muscle differentiation: inhibition of MyoD protein expression and activity by p202. Mol. Cell. Biol. 18(2): 1074-1083. PubMed ID: 9448005

Daubas, P., et al. (2000). Myf5 is a novel early axonal marker in the mouse brain and is subjected to post-transcriptional regulation in neurons. Development 127: 319-331. PubMed ID: 10603349

Deato, M. D. and Tjian, R. (2007). Switching of the core transcription machinery during myogenesis. Genes Dev. 21: 2137-2149. PubMed ID: 17704303

Delfini, M.-C., et al. (2000). Delta 1-activated Notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 127: 5213-5224. PubMed ID: 11060246

Delfini, M. C. and Dupr, D. (2004). Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation, in the chick neural tube. Development 131: 713-723. PubMed ID: 14724123

Dominov, J. A., Dunn, J. J. and Miller, J. B. (1998). Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells. J. Cell Biol. 142(2): 537-44. PubMed ID: 9679150

Dubois, L., et al. (2007). collier transcription in a single Drosophila muscle lineage: the combinatorial control of muscle identity. Development 134: 4347-4355. PubMed ID: 18003742

Duprez, D., Fournier-Thibault, C. and Le Douarin, N. M. (1998). Sonic Hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 125(3): 495-505. PubMed ID: 9425144

Enriquez, J., et al. (2010). Multi-step control of muscle diversity by Hox proteins in the Drosophila embryo. Development 137(3): 457-66. PubMed ID: 20056681

Enriquez, J., et al. (2012). Combinatorial coding of Drosophila muscle shape by Collier and Nautilus. Dev. Biol. 363(1): 27-39. PubMed ID: 22200594

Estrada, B., Choe, S. E., Gisselbrecht, S. S., Michaud, S., Raj, L., Busser, B. W., Halfon, M. S., Church, G. M. and Michelson, A. M. (2006). An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes. PLoS Genet. 2: e16. PubMed ID: 16482229

Fisher, M. E., Isaacs, H. V. and Pownall, M. E. (2002). eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis. Development 129: 1307-1315. PubMed ID: 11880340

Fraidenraich, D., et al. (2000). Activation of Fgf4 gene expression in the myotomes is regulated by myogenic bHLH factors and by sonic hedgehog. Dev. Bio. 225: 392-406. PubMed ID: 10985858

Fukushige, T. and Krause, M. (2005). The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos. Development 132(8): 1795-805. PubMed ID: 15772130

Fukushige, T., Brodigan, T. M., Schriefer, L. A., Waterston, R. H. and Krause, M. (2006). Defining the transcriptional redundancy of early bodywall muscle development in C. elegans: evidence for a unified theory of animal muscle development. Genes Dev. 20: 3395-3406. PubMed ID: 17142668

Gerber, A. N., et al. (1997). Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev. 11: 436-450. PubMed ID: 9042858

Gong, C., et al. (2009). SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev. 23(1): 54-66. PubMed ID: 19095803

Grimaldi, A., et al. (2004). Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. Development 131: 3249-3262. PubMed ID: 15201218

Gu, W., Schneider, J. W., Condorelli, G., Kaushal, S., Mahdavi, V. and Nadal-Ginard, B. (1993). Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72: 309-324. PubMed ID: 8381715

Gustafsson, M. K., et al. (2002). Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev. 16: 114-126. PubMed ID: 11782449

Hacker, A. and Guthrie, S. (1998). A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125(17): 3461-3472. PubMed ID: 9693149

Haldar, M., Karan, G., Tvrdik, P. and Capecchi, M. R. (2008). Two cell lineages, myf5 and myf5-independent, participate in mouse skeletal myogenesis. Dev. Cell 14(3): 437-45. PubMed ID: 18331721

Hamamori, Y., et al. (1997). The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol. Cell. Biol. 17(11): 6563-6573. PubMed ID: 9343420

Harfe, B. D., et al. (1998). MyoD and the specification of muscle and non-muscle fates during postembryonic development of the C. elegans mesoderm. Development 125: 2479-2488. PubMed ID: 9609831

Hayashi, S., Manabe, I., Suzuki, Y., Relaix, F. and Oishi, Y. (2016). Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice. Elife [Epub ahead of print]. PubMed ID: 27743478

Henderson, D. J., Conway, S. J. and Copp, A. J. (1999). Rib truncations and fusions in the Sp2H mouse reveal a role for Pax3 in specification of the ventro-lateral and posterior parts of the somite. Dev. Biol. 209(1): 143-158. PubMed ID:

Hersh, B. M. and Carroll, S. B. (2005). Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development 132: 1567-1577. PubMed ID: 15753212

Hinits, Y., Osborn, D. P. and Hughes, S. M. (2009). Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 136(3): 403-14. PubMed ID: 19141670

Hirsinger, E., et al. (2001). Notch signaling acts in postmitotic avian myogenic cells to control MyoD activation. Development 128: 107-116 . PubMed ID: 11092816

Hoppler, S., Brown, J. D. and Moon, R. T. (1996). Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev. 10: 2805-17. PubMed ID: 8946920

Hu, P., Geles, K. G., Paik, J. H., DePinho, R. A. and Tjian, R. (2008). Codependent activators direct myoblast-specific MyoD transcription. Dev. Cell 15(4): 534-46. PubMed ID: 18854138

Huang, J., Blackwell, T. K., Kedes, L. and Weintraub, H. (1996). Differences between MyoD DNA binding and activation site requirements revealed by functional random sequence selection. Mol. Cell. Biol. 16: 3893-3900. PubMed ID: 8668207

Huang, J., Weintraub, H. and Kedes, L. (1998). Intramolecular regulation of MyoD activation domain conformation and function. Mol. Cell. Biol. 18(9): 5478-84. PubMed ID: 9710631

Hughes, S. M., et al. (1997). MyoD protein is differentially accumulated in fast and slow skeletal muscle fibres and required for normal fibre type balance in rodents. Mech. Dev. 61 (1-2): 151-163. PubMed ID: 9076685

Ikeya, M. and Takada, S. (1998). Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125(24): 4969-76. PubMed ID: 9811581

Junion, G., Bataille, L., Jagla, T., Da Ponte, J. P., Tapin, R. and Jagla, K. (2007). Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors. Genes Dev. 21(23): 3163-80. PubMed ID: 18056427

Kablar, B., et al. (1997). MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124(23): 4729-4738. PubMed ID: 9428409

Kablar B., et al. (1999). Myogenic determination occurs independently in somites and limb buds. Dev. Biol. 206(2): 219-31. PubMed ID: 9986734

Kablar, B., Tajbakhsh, S. and Rudnicki, M. A. (2000). Transdifferentiation of esophageal smooth to skeletal muscle is myogenic bHLH factor-dependent. Development 127: 1627-1639 . PubMed ID: 10725239

Kablar, B., et al. (2003). Myf5 and MyoD activation define independent myogenic compartments during embryonic development. Dev. Biol. 258: 307-318. PubMed ID: 12798290

Keller, C. A., Erickson, M. S. and Abmayr, S. M. (1997). Misexpression of nautilus induces myogenesis in cardioblasts and alters the pattern of somatic muscle fibers. Dev. Biol 181: 197-212. PubMed ID: 9013930

Keller, C. A., Grill, M. A. and Abmayr, S. M. (1998). A role for nautilus in the differentiation of muscle precursors. Dev. Biol. 202(2): 157-71. PubMed ID: 9769169

Kitzmann, M., et al. (1998). The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J. Cell Biol. 142(6): 1447-59. PubMed ID: 9744876

Kobayashi, N., et al. (2007). c-Ski activates MyoD in the nucleus of myoblastic cells through suppression of histone deacetylases. Genes Cells 12(3): 375-85. PubMed ID: 17352741

Kong, Y., et al. (1997). Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol. Cell. Biol. 17(8): 4750-4760

Kopan, R., Nye, J. S. and Weintraub, H. (1994). The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed by the basic helix-loop-helix region of MyoD. Development 120: 2385-2396

Kophengnavong, T., Michnowicz, J. E. and Blackwell, T. K. (2000). Establishment of distinct MyoD, E2A, and twist DNA binding specificities by different basic region-DNA conformations. Mol. Cell. Biol. 20: 261-272. PubMed ID: 10594029

Kucharczuk, K. L., et al. (1999). Fine-scale transgenic mapping of the MyoD core enhancer: MyoD is regulated by distinct but overlapping mechanisms in myotomal and non-myotomal muscle lineages. Development 126(9): 1957-1965 . PubMed ID: 10101129

Langlands, K., et al. (1997). Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J. Biol. Chem. 272(32): 19785-19793. PubMed ID: 9242638

Lee, J. C., et al. (1995). Identification of a Drosophila muscle development gene with structural homology to mammalian early growth response transcription factors. Proc Natl Acad Sci 92: 10344-10348. PubMed ID: 7479781

Lei, H., Liu, J., Fukushige, T., Fire, A. and Krause, M. (2009). Caudal-like PAL-1 directly activates the bodywall muscle module regulator hlh-1 in C. elegans to initiate the embryonic muscle gene regulatory network. Development 136(8): 1241-9. PubMed ID: 19261701

L'honore, A., et al. (2003). MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration. Mol. Biol. Cell. 14(5): 2151-62. Epub 2003 Jan 26. PubMed ID: 12802082

Lilly, B., et al. (1994). D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc Natl Acad Sci 91: 5662-6

Lindon, C., et al. (2001). Cell density-dependent induction of endogenous myogenin (myf4) gene expression by Myf5. Dev. Biol. 240(2): 574-584. PubMed ID: 11784084

Linker, C., et al. (2003). Intrinsic signals regulate the initial steps of myogenesis in vertebrates. Development 130: 4797-4807. PubMed ID: 12917295

Lluis, F., et al. (2005). E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J. 24: 974-984. PubMed ID: 15719023

Lord, P. C., et al. (1995). Normal expression and the effects of ectopic expression of the Drosophila muscle segment homeobox (msh) gene suggest a role in differentiation and patterning of embryonic muscles. Dev Biol 171: 627-640. PubMed ID: 7556942

Lu, J., et al. (1999). MyoR: A muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of myoD. Proc. Natl. Acad. Sci. 96(2): 552-7. PubMed ID: 9892671

Lu, J., et al. (2000). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Molec. Cell 6: 233-244. PubMed ID: 10983972

Mal, A., et al. (2001). A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 20: 1739-1753. PubMed ID: 11285237

Marcelle, C., Ahlgren, S. and Bronner-Fraser, M. (1999). In vivo regulation of somite differentiation and proliferation by Sonic Hedgehog. Dev. Biol. 214(2): 277-87. PubMed ID: 10525334

Markus, M., Du, Z. and Benezra, R. (2002). Enhancer-specific modulation of E protein activity, J. Biol. Chem. 277: 6469-6477. PubMed ID: 11724804

Maroto, M., et al. (1997). Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89 (1): 139-148

Maves, L., et al. (2007). Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development 134(18): 3371-82. PubMed ID: 17699609

Meech, R., Makarenkova, H., Edelman, D. B. and Jones, F. S. (2003). The homeodomain protein Barx2 promotes myogenic differentiation and is regulated by myogenic regulatory factors. J. Biol. Chem. 278(10): 8269-78. PubMed ID: 12486129

Meedel, T. H., Farmer, S. C. and Lee, J. J. (1997). The single MyoD family gene of Ciona intestinalis encodes two differentially expressed proteins: implications for the evolution of chordate muscle gene regulation. Development 124: 1711-1721. PubMed ID: 9165119

Meedel, T. H., Lee, J. J. and Whittaker, J. R. (2002). Muscle development and lineage-specific expression of CiMDF, the MyoD-Family gene of Ciona intestinalis. Dev. Biol. 241(2): 238-46. PubMed ID: 11784108

Michelson, A.M., Abmayr, S.M., Bate, M., Martinez Arias, A. and Maniatis, T. (1990). Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. Genes Dev. 4: 2086-2097. PubMed ID: 2176634

Misquitta, L. and Paterson, B. M. (1999). Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): A role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. 96(4): 1451-6. PubMed ID: 9990044

Molkentin, J. D. and Olson, E. N. (1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. 93: 9366-73 . PubMed ID: 8790335

Myer, A., et al. (1997). Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo. Dev. Biol. 185(2): 127-138. PubMed ID: 9187078

Myer, A. Olson, E. N. Klein, W. H. (2001). MyoD cannot compensate for the absence of Myogenin during skeletal muscle differentiation in murine embryonic stem cells. Dev. Bio. 229: 340-350. PubMed ID: 11203698

Ogryzko, V. V., et al. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953-959. PubMed ID: 8945521

Olguin, H. C. and Olwin, B. B. (2004). Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev. Biol. 275(2): 375-88. PubMed ID: 15501225

Olguin, H. C., et al. (2007). Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J. Cell Biol. 177: 769-779. PubMed ID: 17548510

Pan, H., et al. (2011). A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis. Dev. Biol. 351(1): 120-7. PubMed ID: 21211521

Paterson, B.M., Walldorf, U., Eldridge, J., Dubendorfer, A., Frasch, M. and Gehring, W.J. (1991). The Drosophila homologue of vertebrate myogenic-determination genes encodes a transiently expressed nuclear protein marking primary myogenic cells. Proc Natl Acad Sci 88: 3782-3786. PubMed ID: 1902570

Penn, B. H., et al. (2004). A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev. 18: 2348-2353. PubMed ID: 15466486

Perry, R. L. S., Parker, M. H. and Rudnicki, M. A. (2001). Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Molec. Cell 8: 291-301. PubMed ID: 11545732

Philippakis, A. A., Busser, B. W., Gisselbrecht, S. S., He, F. S., Estrada, B., Michelson, A. M. and Bulyk, M. L. (2006). Expression-guided in silico evaluation of candidate cis regulatory codes for Drosophila muscle founder cells. PLoS Comput. Biol. 2: e53. PubMed ID: 16733548

Philpott, A., et al. (1997). The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning. Genes Dev. 11(11): 1409-21

Polli, M. and Amaya, E. (2002). A study of mesoderm patterning through the analysis of the regulation of Xmyf-5 expression. Development 129: 2917-2927. PubMed ID: 12050139

Pomies, P., et al. (2007). The cytoskeleton-associated PDZ-LIM protein, ALP, acts on serum response factor activity to regulate muscle differentiation. Mol. Biol. Cell 18(5): 1723-33. PubMed ID: 17332502

Puri, P. L., et al. (1997). p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16: 384-395. PubMed ID: 9029156

Puri, P. L., et al. (2000). Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev. 14: 574-584. PubMed ID: 10716945

Ranganayakulu, G., Schulz, R. A. and Olson, E. N. (1996). Wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev. Biol. 176: 143-148. PubMed ID: 8654890

Rawls, A., et al. (1998). Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125(13): 2349-2358. PubMed ID: 9609818

Reshef, R., Maroto, M. and Lassar, A. B. (1998), Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev. 12(3): 290-303. PubMed ID: 9450925

Robson, L. G. and Hughes, S. M. (1996). The distal limb environment regulates MyoD accumulation and muscle differentiation in mouse-chick chimæric limbs. Development 122: 3899-3910. PubMed ID: 9012510

Ruiz-Gomez, M., Coutts, N., Price, A., Taylor, M. V., and Bate, M. (2000). Drosophila dumbfounded: A myoblast attractant essential for fusion. Cell 102: 189-198. PubMed ID: 10943839

Russo S., et al. (1998). Myogenic conversion of NIH3T3 cells by exogenous MyoD family members: dissociation of terminal differentiation from myotube formation. J. Cell Sci. 111( Pt 6): 691-700. PubMed ID: 9471998

Sabourin, L. A., et al. (1999). Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J. Cell Biol. 144(4): 631-643. PubMed ID: 10037786

Saga, Y., et al. (1997). Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11(14): 1827-1839. PubMed ID: 9242490

Sandmann, T., Girardot, C., Brehme, M., Tongprasit, W., Stolc, V. and Furlong, E. E. (2007). A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev. 21: 436-449. PubMed ID: 17322403

Sartorelli, V., et al. (1997). Molecular mechanisms of myogenic coactivation by p300: Direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17: 1010-26. PubMed ID: 9001254

Seale, P., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature. 454(7207): 961-7. PubMed ID: 18719582

Shi, D.-L., et al. (2002). Zygotic Wnt/ß-Catenin signaling preferentially regulates the expression of Myf5 gene in the mesoderm of Xenopus. Dev. Biol. 245: 124-135. PubMed ID: 11969260

Shih, H. H., Tevosian, S. G. and Yee, A. S. (1998). Regulation of differentiation by HBP1, a target of the retinoblastoma protein. Mol. Cell Biol. 18(8): 4732-43. PubMed ID: 9671483

Shishido, E., et al. (1993). Two FGF-receptor homologs of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117: 751-61. PubMed ID: 8330538

Sitcheran, R., Cogswell, P. C. and Baldwin, A. S. (2003). NF-kappaB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism. Genes Dev. 17: 2368-2373. PubMed ID: 14522944

Song, A., Wang, Q. and Goebl, M. G.(1998). Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol. Cell. Biol. 18(9): 4994-9. PubMed ID: 9710583

Spitz, F., et al. (1998). Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc. Natl. Acad. Sci. 95(24): 14220-5. PubMed ID: 9826681

Staehling-Hampton, K., Hoffmann, F. M., Baylies, M. K., Rushton E. and Bate, M. (1994). dpp induces mesodermal gene expression in Drosophila. Nature 372: 783-677. PubMed ID: 7997266

Tajbakhsh, S., et al. (1997). Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89 (1): 127-138. PubMed ID: 9094721

Tajbakhsh, S., et al. (1998). Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125(21): 4155-4162. PubMed ID: 9753670

Teboul, L., et al. (2002). The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5 but not for subsequent, multiple phases of somitic myogenesis. Development 129: 4571-4580. PubMed ID: 12223413

Togel, M., Meyer, H., Lehmacher, C., Heinisch, J. J., Pass, G., Paululat, A. (2013). The bHLH transcription factor Hand is required for proper wing heart formation in Drosophila. Dev Biol 381: 446-459. PubMed ID: 23747982

Umbhauer, M., et al. (1994). Control of somitic expression of tenascin in Xenopus embryos by myogenic factors and Brachyury. Dev. Dyn. 200 (4): 269-277. PubMed ID: 7527682

Umbhauer, M., Boucaut, J.-C. and Shi, D.-L. (2001). Repression of XMyoD expression and myogenesis by Xhairy-1 in Xenopus early embryo. Mech. Dev. 109: 61-68. PubMed ID: 11677053

Valdez, M. R., et al. (2000). Failure of Myf5 to support myogenic differentiation without Myogenin, MyoD, and MRF4. Dev. Biol. 219: 287-298. PubMed ID: 10694423

Vinagre, T., et al. (2010). Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev Cell. 18(4): 655-61. PubMed ID: 20412779

Vinals, F., et al. (1997). Myogenesis and MyoD down-regulate Sp1. A mechanism for the repression of GLUT1 during muscle cell differentiation. J. Biol. Chem. 272 (20): 12913-12921. PubMed ID: 9148896

Vivian, J. L., et al. (1999). A hypomorphic myogenin allele reveals distinct myogenin expression levels required for viability, skeletal muscle development, and sternum formation. Dev. Biol. 208(1): 44-55. PubMed ID: 10075840

Volk, T. and VijayRaghaven, K. (1994). A central role for epidermal segment border cells in the induction of muscle patterning in the Drosophila embryo. Development 120: 59-70. PubMed ID: 8119132

Wang, C., Wang, M., Arrington, J., Shan, T., Yue, F., Nie, Y., Tao, W. A. and Kuang, S. (2017). Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors. Development 144(2): 235-247. PubMed ID: 27993983

Wang, D.-Z., et al. (2001). The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128: 4623-4633. PubMed ID: 11714687

Wang, Y. and Jaenisch, R. (1997). Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently. Development 124(13): 2507-2513. PubMed ID: 9216993

Wei, Q., Marchler, G., Edington, K., Karsch-Mizrachi, I. and Paterson, B. M. (2000). RNA interference demonstrates a role for nautilus in the myogenic conversion of Schneider cells by daughterless. Dev. Bio. 228: 239-255. PubMed ID: 11112327

Wei, Q., Rong, Y. and Paterson, B. M. (2007). Stereotypic founder cell patterning and embryonic muscle formation in Drosophila require nautilus (MyoD) gene function. Proc. Natl. Acad. Sci. 104(13): 5461-6. PubMed ID: 17376873

Williams, B. A. and Ordahl, C. P. (2000). Fate restriction in limb muscle precursor cells precedes high-level expression of MyoD family member genes. Development 127: 2523-2536. PubMed ID: 10821752

Wilson-Rawls, J., et al. (1999). Differential regulation of epaxial and hypaxial muscle development by Paraxis. Development 126(23): 5217-5229. PubMed ID: 10556048

Wittenberger, T., et al. (1999). MyoD stimulates Delta-1 transcription and triggers Notch signaling in the Xenopus gastrula. EMBO J. 18(7): 1915-1922. PubMed ID: 10202155

Yablonka-Reuveni Z., et al. (1999). The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev. Biol. 210(2): 440-55. PubMed ID: 10357902

Yamamoto, M., et al. (2007). Cloning and characterization of a novel MyoD enhancer-binding factor. Mech. Dev. 124(9-10): 715-28. PubMed ID: 17693064

Yang, Z., et al. (2009). MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state. Genes Dev. 23(6): 694-707. PubMed ID: 19299559

Yao, J., et al. (2011). Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev. 25(6): 569-80. PubMed ID: 21357673

Yoshida, N., et al. (1998). Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and myf-5 generates 'reserve cells'. J, Cell Sci. 111( 6): 769-779. PubMed ID: 10087257

Zammit, P. S., et al. (2004). Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. Dev. Biol. 273: 454-465. PubMed ID: 15328025

Zetser, A., Frank, D. and Bengal, E. (2001). MAP kinase converts MyoD into an instructive muscle differentiation factor in Xenopus. Dev. Biol. 240(1): 168-81. PubMed ID: 11784054

Zhang, J. M., et al. (1999a). Evolutionary conservation of MyoD function and differential utilization of E proteins. Dev. Biol. 208(2): 465-472. PubMed ID: 10191059

Zhang, J. M., et al. (1999b). Direct inhibition of G1 cdk kinase activity by MyoD promotes myoblast cell cycle withdrawal and terminal differentiation. EMBO J. 18: 6983-6993. PubMed ID: 10601020


nautilus: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology

date revised: 11 November 2016 

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.