Patterning
B1 Indian hedgehog is required for normal differentiation of ES cell embryoid
bodies.
P. Maye, S. Becker, L. Kasameyer, N. Byrd and L. Grabel. Wesleyan Univ., CT.
B2 The cdx-4 homeobox gene plays a role in anterior-posterior patterning
in the mouse embryo
D.M. Boucher, M.L. Flannery, J.J. Meneses, R.A. Pedersen. UC San Francisco, CA.
B3 Hoxc13 and Naked mice
A.R. Godwin and M.R. Capecchi. Univ. of Kansas Med. Ctr., KS; HHMI,/Univ. of Utah,
UT.
B4 Fgf8 can activate Gbx2 and transform regions of the rostral mouse
brain into a hindbrain fate
A. Liu, K. Losos, A. Joyner. HHMI and Skirball Inst., NYU Sch. of Med., NY.
B5 Molecular genetics of murine mid-hindbrain patterning
H.X. Chen, Y. Lun, L. Gan, J.A. Golden and R.L. Johnson. UT MD Anderson Cancer
Ctr.; Univ. of Penn. Sch. of Medicine.
B6 The mouse mesoderm development (mesd) mutation uncouples head and
trunk organizer function.
K. Brown, M.E. Wines, S. Wefer, C. DeRossi and B.C. Holdener. SUNY at Stony Brook,
NY.
B7 The role of Tbx6 in mouse paraxial mesoderm formation.
D.L. Chapman and V.E. Papaioannou. Univ. of Pittsburgh, PA and Columbia Univ.
Coll. of Physicians and Surgeons, NY.
B8 Shh is essential for the determination of the epaxial muscle lineage.
A.G. Borychki, B. Brunk, S. Tajbakshk2 M. Buckingham, C. Chiang and C.P. Emerson.
U Penn. Sch. of Med., PA, Pasteur Inst., France and Vanderbilt Univ., TN.
B9 Induction of hematopoietic and vascular mesoderm by souble endodermal
signals in the gastrulating mouse embryo.
M.H. Baron, D. Ramirez and J. Zavadil. Mount Sinal Sch. of Med., NY.
B10 Physical forces may shift HOX clusters in an environment allowing
expression
S.Papageorgiou. N.R.C. Demokritos, Greece.
B11 Testing Hox genes by surgical manipulation.
J.L. Nowicki and A.C. Burke. Univ. of North Carolina at Chapel Hill, NC.
B12 Hox gene expression and regulation in the presumptive wing region
of the chick lateral plate mesoderm
K.C. Oberg and G. Eichele. Baylor Coll. of Med., TX.
B13 En1 plays multiple roles in vertebrate limb development
R. Kimmel, C. Loomis, K. Losos, D. Turnbull, A. Joyner. HHMI and Skirball Inst.,
NYUMC, NY.
B14 Analysis of LHX2b's dorsalizing effect in the chick hindlimb
L.L. Wong, R.D. Riddle. Univ. of Pennsylvania, PA.
B15 Expression of the Spemann organizer genes, cerberus, frzb and Xlim-1
are dependent on siamois and TGF signaling
M.J. Engleka and D.S. Kessler. Univ. of Pennsylvania, PA
B16 Xenopus antivin, a novel antagonistic factor involved in
left-right morphological determination.
A.M.S. Cheng, C. Thisse, B. Thisse and C.V.E. Wright. Vanderbilt Univ. Med. Ctr.,
TN and Univ. of Louis Pasteur, France.
B17 Direct repression of Xwnt8 by goosecoid regulates Xenopus
anterior development
J. Yao and D.S. Kessler. Univ. of Pennsylvania, PA.
B18 Xrx1 in Xenopus eye and anterior brain development
M. Andreazzoli, G. Gestri1, D. Angeloni, E. Menna1 and G. Barsacchi. Univ. of
Pisa, Italy; NICHD/NIH, MD, NCI/FCRF, MD.
B19 Pituitary adenylate cyclase activating peptide (PACAP) and receptor
expression in the Xenopus neural tube: potential role in patterning and
neurogenesis.
J.A. Waschek, Z. Hu, A. Chao, V. Lelievre, X. Zhou and W.I. Rodriguez. UC Los
Angeles, CA.
B20 Fate mapping the Xenopus endoderm
D.R. Knutson, N.M. Nascone. Eckerd Coll., FL.
B21 Spatially distinct head and heart inducers in the Xenopus organizer
V.A. Schneider and M. Mercola. Harvard Med. Sch., MA.
B22 Vaccinia as a tool for functional analysis of limb regeneration.
S. Roy, D.M. Gardiner and S.V. Bryant. UC Irvine, CA.
B23 Reassessment of inducing factors in primitive blood development
of Xenopus embryos
G. Kumano and W.C. Smith. UC Santa Barbara, CA.
B24 A panel of transgenic reporter lines in Xenopus tropicalis
L.B. Zimmerman, J. Gray and R.M. Grainger. Univ. of Virginia, VA.
B25 Delta-mediated lateral inhibition regulates specification of trunk
but not cranial neural crest in zebrafish
R.A. Cornell and J.S. Eisen. Univ. of Oregon, OR.
B26 Zebrafish nodal-related 2/Squint encodes an early acting mesendodermal
inducer acting from the extraembryonic YSL.
C.E. Erter, L. Solnica-Krezel and C.V. Wright. Vanderbilt Univ., TN.
B27 FGF signaling and mesodermal patterning in the zebrafish embryo
B.W. Draper, J.B. Phillips, D. Stock and C.B. Kimmel. Univ. of Oregon, OR; Penn.
State Univ., PA.
B28 Regulation of axis development by antagonism of lefty and nodal
signaling.
B.W. Bisgrove, J.J. Essner and H.J. Yost. Univ. of Utah.
B29 Evidence that signals from the somites play a role in the proper
anteroposterior patterning of the notochord.
L.A. Rohde and R.K. Ho. Princeton Univ., NJ.
B30 A role for zebrafish meis and hoxa1 as integration points for dorsoventral
and anteroposterior axial signals
C. Sagerstrom, N. Vlachakis, D. Ellstrom. Univ. of Massachusetts Med. Sch., MA.
B31 A hierarchy of dorsalized and ventralized mutants in the zebrafish
D.S. Wagner and M.C. Mullins. U. of Pennsylvania, PA.
B32 Antagonism of BMP activity during zebrafish gastrulation
V. Miller-Bertoglio, M. Furthauer, A. Carmany-Rampey, B. Thisse, C. Thisse, L.
Solnica-Krezel and M.E. Halpern. Carnegie Inst. of Washington, MD; Institut de
Genetique et de Biologie Molec. et Cell., France; Vanderbilt Univ., TN.
B33 The function of SOG in specifying positional information in the
dorsal ectoderm of the Drosophila embryo
E. Decotto, J. Neul and C. Ferguson. Univ. of Chicago, IL.
B34 Maternal sog and dpp pattern the embryonic dorso-ventral axis by
modifying the Dorsal nuclear gradient
H. Araujo and E. Bier. UC San Diego, CA.
B35 Regulation of Ci levels in the imaginal discs of Drosophila
by comb gap
G. Campbell and A. Tomlinson. Univ. of Pittsburgh, PA and Columbia Univ., NY.
B36 Expression of some wing morphogenetic genes in Lyra imaginal
discs
L.A. Abbott and C. Zidar. Univ. of Colorado-Boulder, CO.
B37 The role of the micromeres in notch activation and mesoderm induction
in the sea urchin embryo.
H.C. Sweet and C.A. Ettensohn. Carnegie Mellon Univ., PA.
B38 Supernumerary eyes result from heavy water treatment in 4-cell
embryos of the snail Ilyanassa obsoleta
M.B.Goulding. Univ. of Texas at Austin, TX