nanos
Agee, S. J., Lyons, D. C. and Weisblat, D. A. (2006). Maternal expression of a NANOS homolog is required for early development of the leech Helobdella robusta. Dev. Biol. 298(1): 1-11. Medline abstract: 16930584
Arrizabalaga, G. and Lehmann, R. (1999). A selective screen reveals discrete functional domains in Drosophila Nanos. Genetics 153: 1825-1838. Medline abstract: 10581288
Asaoka, M., et al. (1998). Maternal Nanos regulates zygotic gene expression in germline progenitors of Drosophila melanogaster. Mech. Dev. 78(1-2): 153-158. PubMed Citation: 9858716
Asaoka, M., Hanyu-Nakamura, K., Nakamura, A. and Kobayashi, S. (2019). Maternal Nanos inhibits Importin-alpha2/Pendulin-dependent nuclear import to prevent somatic gene expression in the Drosophila germline. PLoS Genet 15(5): e1008090. PubMed ID: 31091233
Asaoka-Taguchi, M., et al. (1999). Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat. Cell Biolog. 1(7): 431-437. PubMed Citation: 10559987
Baines, R. A., et al. (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21: 1523-1531. PubMed Citation: 11222642
Barrios, F., et al. (2010). Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J. Cell Sci. 123(Pt 6): 871-80. PubMed Citation: 20159962
Becalska, A. N., et al. (2011). Aubergine is a component of a nanos mRNA localization complex. Dev. Biol. 349(1): 46-52. PubMed Citation: 20937269
Bergsten, S. E. and Gavis, E. R. (1999). Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development 126: 659-669. Medline abstract: 9895314
Bergsten, S. E., Huang, T., Chatterjee, S. and Gavis, E. R. (2001). Recognition and long-range interactions of a minimal nanos RNA localization signal element. Development 128: 427-435. PubMed Citation: 11152641
Bhandari, D., Raisch, T., Weichenrieder, O., Jonas, S. and Izaurralde, E. (2014). Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev 28: 888-901. PubMed ID: 24736845
Bhata, K. M. (1999). The posterior determinant Gene nanos Is required for the maintenance of the adult germline stem cells during Drosophila oogenesis. Genetics 151: 1479-1492. PubMed Citation: 10101171
Braun, J. E., Huntzinger, E. and Izaurralde, E. (2012). A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harb Perspect Biol 4. PubMed ID: 23209154
Brechbiel, J. L. and Gavis, E. R. (2008). Spatial regulation of nanos is required for its function in dendrite morphogenesis. Curr. Biol. 18(10): 745-50. PubMed Citation: 18472422
Bullock, S. L. and Ish-Horowicz, D. (2001). Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 414(6864): 611-6. 11740552
Chagnovich, D. and Lehmann, R. (2001). Poly(A)-independent regulation of maternal hunchback translation in the Drosophila embryo Proc. Natl. Acad. Sci. 98: 11359-11364. 11562474
Chau, J., Kulnane, L. S. and Salz, H. K. (2012). Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis. Proc Natl Acad Sci U S A 109: 9465-9470. PubMed ID: 22645327
Chekulaeva, M., Mathys, H., Zipprich, J. T., Attig, J., Colic, M., Parker, R. and Filipowicz, W. (2011). miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18: 1218-1226. PubMed ID: 21984184
Chen, Y., Boland, A., Kuzuoglu-Õztürk, D., Bawankar, P., Loh, B., Chang, C. T., Weichenrieder, O., Izaurralde, E. (2014). A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell. 54(5):737-50. PubMed ID: 24768540
Cinnamon, E., et al. (2004). Capicua integrates input from two maternal systems in Drosophila terminal patterning. EMBO J. 23: 4571-4582. 15510215
Clark, I. E., Wyckoff, D. and Gavis, E. R. (2000). Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism. Curr. Biol. 10: 1311-1314. 11069116
Clark, I. E., et al. (2002). A common translational control mechanism functions in axial patterning and neuroendocrine signaling in Drosophila. Development 129: 3325-3334. 12091303
Cockerill, K.A., Billin, A.N. and Poole, S.J. (1993). Regulation of expression domains and effects of ectopic expression reveal gap gene-like properties of the linked pdm genes of Drosophila. Mech. Dev. 41: 139-153. PubMed Citation: 8518192
Cooke, A., Prigge, A. and Wickens, M. (2010). Translational repression by deadenylases. J Biol Chem 285: 28506-28513. PubMed ID: 20634287
Crucs, S., Chatterjee, S. and Gavis, E. R. (2000). Overlapping but distinct RNA elements control repression and activation of nanos translation. Molec. Cell 5: 457-467. 10882131
Curtis, D., Apfeld, J. and Lehmann, R. (1995). nanos is an evolutionarily conserved organizer of anterior-posterior polarity. Development 121: 1899-1910. PubMed Citation: 7601003
Curtis, D., et al. (1997). A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J. 16: 834-843
Dahanukar, A. and Wharton, R. P. (1996). The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev. 10: 2610-20. PubMed Citation: 9049312
Dahanukar, A., Walker, J. A. and Wharton, R. P. (1999). Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell 4: 209-218. PubMed Citation: 10488336
Dai, P., Wang, X., Gou, L. T., Li, Z. T., Wen, Z., Chen, Z. G., Hua, M. M., Zhong, A., Wang, L., Su, H., Wan, H., Qian, K., Liao, L., Li, J., Tian, B., Li, D., Fu, X. D., Shi, H. J., Zhou, Y. and Liu, M. F. (2019). A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell 179(7): 1566-1581 e1516. PubMed ID: 31835033
Deshpande, G., et al. (1999). Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell 99: 271-281. PubMed Citation: 10555143
Deshpande, G., et al. (2005). Nanos downregulates transcription and modulates CTD phosphorylation in the soma of early Drosophila embryos. Mech. Dev. 122(5): 645-57. 15817222
Ding, D., et al. (1993). Dynamic Hsp83 RNA localization during Drosophila oogenesis and embryogenesis. Mol. Cell Biol. 13: 3773-81. PubMed Citation: 7684502
Doyle, M. and Kiebler, M. A. (2012). A numbers game underpins cytoplasmic mRNA transport. Nat Cell Biol 14: 333-335. PubMed ID: 22469827
Edwards, T. A., et al. (2001). Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105: 281-289. 11336677
Fabian, M. R., Frank, F., Rouya, C., Siddiqui, N., Lai, W. S., Karetnikov, A., Blackshear, P. J., Nagar, B., Sonenberg, N. (2013). Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat Struct Mol Biol. 20(6):735-9 . PubMed ID: 23644599
Forbes, A. and Lehmann, R. (1998). Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125(4): 679-690. PubMed Citation: 9435288
Forrest, K. M., Clark, I. E., Jain, R. A. and Gavis, E. R. (2004). Temporal complexity within a translational control element in the nanos mRNA. Development 131: 5849-5857. 15525666
Forristall, C., et al. (1995). Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2. Development 121: 201-208
Gamberi, C., Peterson, D. S., He, L. and Gottlieb, E. (2002). An anterior function for the Drosophila posterior determinant Pumilio. Development 129: 2699-2710. 12015297
Gavis, E. R. and Lehmann, R. (1992). Localization of nanos RNA controls embryonic polarity. Cell 71: 301-313. PubMed Citation: 1423595
Gavis, E. R. and Lehmann, R. (1994). Translational regulation of nanos by RNA localization. Nature 369: 315-8. PubMed Citation: 7514276
Gavis, E. R., Curtis, D. and Lehmann, R. (1996a). Identification of cis-acting sequences that control nanos RNA localization. Dev. Biol. 176: 36-50. PubMed Citation: 8654893
Gavis, E. R., et al. (1996b). A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 12: 2791-2800. PubMed Citation: 8787753
Gavis, E. R., Chatterjee, S., Ford, N. R. and Wolff, L. J. (2008). Dispensability of nanos mRNA localization for abdominal patterning but not for germ cell development. Mech. Dev. 125(1-2): 81-90. PubMed citation: 18036786
Gerber, A. P., et al. (2006). Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc. Natl. Acad. Sci. 103: 4487-4492. PubMed Citation: 16537387
Gilboa, L., and Lehmann, R. (2004). Repression of primordial germ cell differentiation parallels germ line stem cell maintenance. Curr. Biol. 14: 981-986. 15182671
Goldstrohm, A. C., Hook, B. A., Seay, D. J. and Wickens, M. (2006). PUF proteins bind Pop2p to regulate messenger RNAs. Nat. Struct. Mol. Biol. 13: 533-539. Medline abstract: 16715093
Hansen, D., et al. (2004). Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131: 93-104. 15063172
Heller, A. and Steinmann-Zwicky, M. (1998). No premature gene expression in germ cells of embryos deriving from nos females. Mech. Dev. 72(1-2): 169-173. PubMed Citation: 9533961
Insco, M. L., Bailey, A. S., Kim, J., Olivares, G. H., Wapinski, O. L., Tam, C. H. and Fuller, M. T. (2012). A self-limiting switch based on translational control regulates the transition from proliferation to differentiation in an adult stem cell lineage. Cell Stem Cell 11: 689-700. PubMed ID: 23122292
Jain, R. and Gavis, E. R. (2008). The Drosophila hnRNP M homolog, Rumpelstiltskin, regulates nanos mRNA localization, Development 135: 973-982. PubMed Citation: 18234721
Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. and Gonzalez, C. (2010). Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330: 1824-1827. Pubmed: 21205669
Jeske, M., Meyer, S., Temme, C., Freudenreich, D. and Wahle, E. (2006). Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos. J. Biol. Chem. 281: 25124-25133. Medline abstract: 16793774
Joly, W., Chartier, A., Rojas-Rios, P., Busseau, I. and Simonelig, M. (2013). The CCR4 Deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal. Stem Cell Reports 1: 411-424. PubMed ID: 24286029
Kadyrova, L. Y., Habara, Y., Lee, T. H. and Wharton, R. P. (2007). Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134(8): 1519-27. Medline abstract: 17360772
Kalifa, Y., Huang, T., Rosen, L. N., Chatterjee, S. and Gavis, E. R. (2006). Glorund, a Drosophila hnRNP F/H homolog, is an ovarian repressor of nanos translation. Dev. Cell 10(3): 291-301. 16516833
Kang, D. Pilon, M. Weisblat, D. A. (2002). Maternal and zygotic expression of a nanos-class gene in the leech Helobdella robusta: Primordial germ cells arise from segmental mesoderm. Dev. Biol. 245: 28-41. 11969253
Kawaguchi, S., Ueki, M. and Kai, T. (2020). Drosophila MARF1 ensures proper oocyte maturation by regulating nanos expression. PLoS One 15(4): e0231114. PubMed ID: 32243476
Keyes, L. N. and Spradling, A. C. (1997). The Drosophila gene fs(2)cup interacts with otu to define a cytoplasmic pathway required for the structure and function of germ-line chromosomes. Development 124: 1419-1431. PubMed Citation: 9118812
Kiesler, E., Hase, M. E., Brodin, D. and Visa, N. (2005). Hrp59, an hnRNP M protein in Chironomus and Drosophila, binds to exonic splicing enhancers and is required for expression of a subset of mRNAs. J. Cell Biol. 168: 1013-1025. PubMed Citation: 15781475
Kim, J. Y., Lee, Y. C. and Kim, C. (2010). Direct inhibition of Pumilo activity by Bam and Bgcn in Drosophila germ line stem cell differentiation. J. Biol. Chem. 285(7): 4741-6. PubMed Citation: 20018853
Kim-Ha, J., Kerr, K. and Macdonald, P. M. (1995). Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81: 403-412. PubMed Citation: 7736592
Kobayashi, S., et al. (1996). Essential role of the posterior morphogen Nanos for germline development in Drosophila. Nature 380 (6576): 708-711. PubMed Citation: 8614464
Köprunner, M., et al. (2001). A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev. 15: 2877-2885. 11691838
Kraut, R. and Levine, M. (1991). Spatial regulation of the gap gene giant during Drosophila development. Development 111: 601-9. PubMed Citation: 1893877
Kraemer, B., et al. (1999). NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr. Biol. 9(18): 1009-1018. PubMed Citation: 10508609
Lall, S., Ludwig, M. Z. and Patel, N. H. (2003). Nanos plays a conserved role in axial patterning outside of the Diptera. Curr. Biol. 13: 224-229. 12573218
Lehmann, R. (1988). Phenotypic comparison between maternal and zygotic genes controlling the segmentation pattern of the Drosophila embryo. Development 104 Supplement: 17-27
Lehmann, R. and Nusslein-Volhard, C. (1991). The pole plasm is required for germ cell formation and contains the determinant of posterior polarity, encoded by nanos. Development 112: 679-91. PubMed Citation: 1935684
Lerit, D. A. and Gavis, E. R. (2011). Transport of germ plasm on astral microtubules directs germ cell development in Drosophila. Curr. Biol. 21(6): 439-48. PubMed Citation: 21376599
Li Y., Minor N. T., Park J. K., McKearin D. M. and Maines J. Z. (2009). Bam and Bgcn antagonize Nanos-dependent germ-line stem cell maintenance (2009) Proc. Natl. Acad. Sci. 106, 9304-9309. PubMed Citation: 19470484
Li, Y., Zhang, Q., Carreira-Rosario, A., Maines, J. Z., McKearin, D. M. and Buszczak, M. (2013). Mei-p26 cooperates with Bam, Bgcn and Sxl to promote early germline development in the Drosophila ovary. PLoS One 8: e58301. PubMed ID: 23526974
Little, S. C., Sinsimer, K. S., Lee, J. J., Wieschaus, E. F. and Gavis, E. R. (2015). Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 17(5):558-68. PubMed ID: 25848747
Liu, N., Han, H. and Lasko, P. (2009). Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3' UTR. Genes Dev 23: 2742-2752. PubMed ID: 19952109
Lloyd, T. E., et al. (2002). Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108: 261-26. 11832215
MacArthur, H., et al. (1999). Xcat RNA is a translationally sequestered germ plasm component in Xenopus. Mech. Dev. 84 (1-2): 75-88. PubMed Citation: 10473122
MacLean, J. N., Zhang, Y., Johnson, B. R. and Harris-Warrick, R. M. (2003). Activity-independent homeostasis in rhythmically active neurons. Neuron 37: 109-120. PubMed Citation: 12526777
Markesich, D. C., et al. (2000). bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery. Development 127: 559-572. 10631177
Maschi, D., Fernandez-Alvarez, A. J. and Boccaccio, G. L. (2023). The RNA-binding protein NANOS1 controls hippocampal synaptogenesis. PLoS One 18(4): e0284589. PubMed ID: 37058523
Mathys, H., Basquin, J., Ozgur, S., Czarnocki-Cieciura, M., Bonneau, F., Aartse, A., Dziembowski, A., Nowotny, M., Conti, E., Filipowicz, W. (2014). Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell. 2014 54(5):751-65. PubMed ID: 24768538
Mee, C. J,, Pym, E. C., Moffat, K. G. and Baines, R. A. (2004). Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene. J. Neurosci. 24: 8695-8703. PubMed Citation: 15470135
Menon, K. P., et al.,(2009). The translational repressors Nanos and Pumilio have divergent effects on presynaptic terminal growth and postsynaptic glutamate receptor subunit composition. J. Neurosci., 29:. 5558-5572. PubMed Citation: 19403823
Mochizuki, K., et al. (2000). Expression and evolutionary conservation of nanos-related genes in Hydra. Dev. Genes Evol. 210: 591-602. 21025766
Morris, J. Z., Hong, A., Lilly, M. A. and Lehmann, R. (2005). twin, a CCR4 homolog, regulates cyclin poly(A) tail length to permit Drosophila oogenesis. Development 132(6): 1165-74. Medline abstract: 15703281
Mosquere, L., et al. (1993). An mRNA localized to the vegetal cortex of Xenopus oöcytes encodes a protein with a nanos-like zinc finger. Development 117: 377-386. PubMed Citation: 8223259
Muraro, N. I., et al. (2008). Pumilio binds para mRNA and requires Nanos and Brat to regulate sodium current in Drosophila motoneurons. J. Neurosci. 28(9): 2099-109. PubMed Citation: 18305244
Murata, Y. and Wharton, R. P. (1995). Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80: 747-756. PubMed Citation: 7889568
Nakahata, S., et al. (2001). Biochemical identification of Xenopus Pumilio as a sequence-specific Cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J. Biol. Chem. 276: 20945-20953. 11283000
Olesnicky, E. C., Bhogal, B. and Gavis, E R. (2012). Combinatorial use of translational co-factors for cell type-specific regulation during neuronal morphogenesis in Drosophila. Dev. Biol. 365(1): 208-18. PubMed Citation: 22391052
Pacquelet, A., Zanin, E., Ashiono, C. and Gotta, M. (2007). PAR-6 levels are regulated by NOS-3 in a CUL-2 dependent manner in Caenorhabditis elegans. Dev. Biol. 319(2): 267-72. PubMed Citation: 18502413
Pelegri, F. and Lehmann, R. (1994) A role of Polycomb group genes in the regulation of Gap gene expression in Drosophila. Genetics 136: 1341-1353. PubMed Citation: 8013911
Pilon, M. and Weisblat, D. A. (1997). A nanos homolog in leech. Development 124: 1771-1780. PubMed Citation: 9165124
Pinder, B. D. and Smibert, C. A. (2013). microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep 14: 80-86. PubMed ID: 23184089
Rabinowitz, J. S., et al. (2008). Nanos is required in somatic blast cell lineages in the posterior of a mollusk embryo. Curr. Biol. 18: 331-336. PubMed Citation: 18308570
Raisch, T., Bhandari, D., Sabath, K., Helms, S., Valkov, E., Weichenrieder, O. and Izaurralde, E. (2016). Distinct modes of recruitment of the CCR4-NOT complex by Drosophila and vertebrate Nanos. EMBO J 35(9):974-90. PubMed ID: 26968986
Ramat, A., Garcia-Silva, M. R., Jahan, C., Nait-Saidi, R., Dufourt, J., Garret, C., Chartier, A., Cremaschi, J., Patel, V., Decourcelle, M., Bastide, A., Juge, F. and Simonelig, M. (2020). The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm. Cell Res. PubMed ID: 32132673
Rittenhouse, K. R. and Berg, C. A. (1995). Mutations in the Drosophila gene bullwinkle cause the formation of abnormal eggshell structures and bicaudal embryos. Development 121: 3023-3033. PubMed Citation: 7555728
Rivera-Pomar, R., et al. (1995). Activation of posterior gap gene expression in the Drosophila blastoderm. Nature 376: 253-256. PubMed Citation: 7617036
Rouget, C., et al. (2010). Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467(7319): 1128-32. PubMed Citation: 20953170
Saget, O., et al. (1998). Needs and targets for the multi sex combs gene product in Drosophila melanogaster. Genetics 149(4): 1823-1838. PubMed Citation: 9691040
Salles, F. J., et al. (1994). Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science 266: 1996-1999. PubMed Citation: 7801127
Satoh, D., Sato, D., Tsuyama, T., Saito, M., Ohkura, H., Rolls, M. M., Ishikawa, F. and Uemura, T. (2008). Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nat Cell Biol 10: 1164-1171. PubMed ID: 18758452
Schaner, C. E., et al. (2003). A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev. Cell 5: 747-757. 14602075
Semotok, J. L., et al. (2005). Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr. Biol. 15(4): 284-94. Medline abstract: 15723788
Shukla, A. and Tapadi, M. G. (2011). Differential localization and processing of apoptotic proteins in Malpighian tubules of Drosophila during metamorphosis. Eur. J. Cell Biol. 90: 72-80. PubMed Citation: 21035895
Smibert, C. A., et al. (1996). Smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 10: 2600-2609. PubMed Citation: 8895661
Smibert, C. A., et al. (1999). Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA 5(12): 1535-47. Medline abstract: 10606265
Smith, J. L., Wilson, J. E. and Macdonald, P. M. (1992). Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 70: 849-59. PubMed Citation: 1516136
Sonoda, J. and Wharton, R. P. (1999). Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 13: 2704-2712. PubMed Citation: 10541556
Sonoda, J. and Wharton, R. P. (2001). Drosophila Brain tumor is a translational repressor. Genes Dev. 15(6): 762-73. 11274060
Subramaniam, K. and Seydoux, G. (1999). nos-1and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126: 4861-4871. PubMed Citation: 10518502
Suzanne, M., et al. (1999). The Drosophila p38 MAPK pathway is required during oogenesis for egg asymmetric development. Genes Dev. 13: 1464-1474. PubMed Citation: 10364162
Suzuki, A., Tsuda, M. and Saga, Y. (2007). Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development. Development 134(1): 77-83. 17138666
Temme, C., Zaessinger, S., Meyer, S., Simonelig, M. and Wahle, E. (2004). A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J. 23(14): 2862-71. Medline abstract: 15215893
Temme, C., Zhang, L., Kremmer, E., Ihling, C., Chartier, A., Sinz, A., Simonelig, M. and Wahle, E. (2010). Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA 16: 1356-1370. PubMed ID: 20504953
Temme, C., Simonelig, M., Wahle, E. (2014). Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects Front Genet. 5:143. PubMed ID: 24904643
Trcek, T., Grosch, M., York, A., Shroff, H., Lionnet, T. and Lehmann, R. (2015). Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat Commun 6: 7962. PubMed ID: 26242323
Verrotti, A. C. and Wharton, R. P. (2000). Nanos interacts with Cup in the female germline of Drosophila. Development 127: 5225-5232. PubMed Citation: 11060247
Wang, C. and Lehmann, R. (1991). nanos is the localized posterior determinant of Drosophila. Cell 66: 637-647. PubMed Citation: 1908748
Wang, C., Dickinson, L. K. and Lehmann, R. (1994). Genetics of nanos localization in Drosophila. Dev. Dyn. 199: 103-15. PubMed Citation: 7515724
Warden, M. S., DeRose, E. F., Tamayo, J. V., Mueller, G. A., Gavis, E. R. and Hall, T. M. T. (2023). The translational repressor Glorund uses interchangeable RNA recognition domains to recognize Drosophila nanos. Nucleic Acids Res. PubMed ID: 37427795
Wawersik, M. and Van Doren, M. (2005). nanos is required for formation of the spectrosome, a germ cell-specific organelle. Dev. Dyn. 234: 22-27. Medline abstract: 16028275
Wharton, R. P. and Struhl, G. (1989). Structure of the Drosophila BicaudalD protein and its role in localizing the the posterior determinant nanos. Cell 59: 881-92. PubMed Citation: 2590944
Wharton, R. P. and Struhl, G. (1991). RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67: 955-67. PubMed Citation: 1720354
Wreden, C., et al. (1997). Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. Development 124(15): 3015-3023. PubMed Citation: 9247343
Wu, H. R., et al. (2011). Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev. Biol. 353(1): 147-59. PubMed Citation: 21354126
Wulczyn, F. G., Cuevas, E., Franzoni, E. and Rybak, A. (2010). MiRNA need a TRIM regulation of miRNA activity by Trim-NHL proteins. Adv Exp Med Biol 700: 85-105. PubMed ID: 21627033
Xu, X., Brechbiel, J. L. and Gavis, E. R. (2013). Dynein-Dependent Transport of nanos RNA in Drosophila Sensory Neurons Requires Rumpelstiltskin and the Germ Plasm Organizer Oskar. J Neurosci 33: 14791-14800. PubMed ID: 24027279
Ye, B., et al. (2004). nanos and pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr. Biol. 14: 314-321. 14972682
Zaessinger, S., Busseau, I. and Simonelig, M. (2006). Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133(22): 4573-83. Medline abstract: 17050620
Zhang, B., et al. (1997). A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390: 477-484. PubMed Citation: 9393998
Zheng, Y., Wildonger, J., Ye, B., Zhang, Y., Kita, A., Younger, S. H., Zimmerman, S., Jan, L. Y. and Jan, Y. N. (2008). Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10: 1172-1180. PubMed ID: 18758451
date revised: 12 August 2020
Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.